SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
基本信息
- 批准号:2221122
- 负责人:
- 金额:$ 32.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-15 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The kernel is the core piece of software in a computer's operating system. Due to the high complexity of kernel software, finding all vulnerabilities during the development phase is nearly impossible. In recent years, crowdsourcing efforts have shown great success in discovering kernel vulnerabilities, where security professionals, hackers, and users can all contribute by submitting kernel bug reports. However, research shows that many vulnerability reports, including those generated by automated tools (e.g., kernel fuzzers), are not easily reproducible. Non-reproducible reports can cause significant delays to the patching process or lead kernel vendors to misjudge the severity of the vulnerability. Preliminary research shows vulnerability reports are not reproducible due to 1) missing information on the compilation configuration; (2) a lack of data to construct the contexts for triggering the bug; and (3) inaccurate or incomplete information about the vulnerable kernel versions. This project will develop new approaches combining crowd-reported and machine-generated data and static-dynamic program analysis to automate the process of inferring, constructing, and validating the needed information for kernel-vulnerability reproduction.This project will provide much-needed automation for reproducing kernel bugs and vulnerabilities. If successful, the project will significantly advance computer security (for kernel vulnerability analysis) and contribute to the field of software engineering (for bug diagnosis and assessment). By improving the reproduction rate of kernel bugs, this project will also help with other parallel efforts for vulnerability patching and remediation. The expected advancements are three-fold. (1) The team will develop novel inference methods to infer the kernel compilation configuration based on memory snapshots and code segments in the bug reports. It will design new approaches to handle the untrusted or corrupted memory dumps caused by the bugs. (2) Team members will develop new mechanisms to construct precise triggering contexts to trigger the reported bugs (via kernel fault manipulation and injection). The context construction method is also able to pinpoint relevant faulty processes and handle kernel interrupt correctly. (3) New fuzzing tools will be designed to migrate input programs to enable much broader bug testing across kernel versions, and new methods to quickly determine non-vulnerable versions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
内核是计算机操作系统中的核心软件。由于内核软件的高度复杂性,在开发阶段找到所有漏洞几乎是不可能的。近年来,众包工作在发现内核漏洞方面取得了巨大成功,安全专业人员、黑客和用户都可以通过提交内核错误报告来做出贡献。然而,研究表明,许多漏洞报告,包括由自动化工具(例如内核模糊器)生成的漏洞报告,都不容易重现。不可重现的报告可能会导致修补过程显着延迟,或导致内核供应商误判漏洞的严重性。初步研究表明,漏洞报告不可重现,原因是:1)缺少编译配置信息; (2) 缺乏数据来构建触发 bug 的上下文; (3) 有关易受攻击的内核版本的信息不准确或不完整。该项目将开发新方法,将人群报告和机器生成的数据与静态动态程序分析相结合,以自动化推断、构建和验证内核漏洞复制所需信息的过程。该项目将为以下领域提供急需的自动化:重现内核错误和漏洞。如果成功,该项目将显着提高计算机安全性(用于内核漏洞分析),并为软件工程领域(用于错误诊断和评估)做出贡献。通过提高内核错误的重现率,该项目还将有助于其他并行的漏洞修补和修复工作。预期的进步是三倍。 (1) 团队将开发新颖的推理方法,根据错误报告中的内存快照和代码段来推断内核编译配置。它将设计新的方法来处理由错误引起的不受信任或损坏的内存转储。 (2) 团队成员将开发新的机制来构建精确的触发上下文来触发所报告的错误(通过内核错误操纵和注入)。上下文构造方法还能够查明相关的故障进程并正确处理内核中断。 (3) 新的模糊测试工具将被设计用于迁移输入程序,以实现跨内核版本更广泛的错误测试,以及快速确定不易受攻击版本的新方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinyu Xing其他文献
CGRED: class guided random early discarding
CGRED:类别引导随机早期丢弃
- DOI:
10.1109/pccc.2004.1394975 - 发表时间:
2004-04-15 - 期刊:
- 影响因子:0
- 作者:
Yuchun Guo;Yongxiang Zhao;Guangnong Song;Xinyu Xing;Changjia Chen - 通讯作者:
Changjia Chen
This paper is included in the Proceedings of the 30th USENIX Security Symposium.
本文收录于第 30 届 USENIX 安全研讨会论文集。
- DOI:
- 发表时间:
1970-01-01 - 期刊:
- 影响因子:0
- 作者:
Xian Wu;Wenbo Guo;Hua Wei;Xinyu Xing - 通讯作者:
Xinyu Xing
UCognito: Private Browsing without Tears
UCognito:无泪私密浏览
- DOI:
10.1145/2810103.2813716 - 发表时间:
2015-10-12 - 期刊:
- 影响因子:0
- 作者:
Meng Xu;Yeongjin Jang;Xinyu Xing;Taesoo Kim;Wenke Lee - 通讯作者:
Wenke Lee
ShadowBound: Efficient Heap Memory Protection Through Advanced Metadata Management and Customized Compiler Optimization
ShadowBound:通过高级元数据管理和定制编译器优化实现高效堆内存保护
- DOI:
10.1145/3459898.3463905 - 发表时间:
2024-06-04 - 期刊:
- 影响因子:0
- 作者:
Zheng Yu;Ganxiang Yang;Xinyu Xing - 通讯作者:
Xinyu Xing
Automated Finite State Machine Extraction
自动有限状态机提取
- DOI:
10.1145/3338502.3359760 - 发表时间:
2019-11-15 - 期刊:
- 影响因子:0
- 作者:
Yongheng Chen;Linhai Song;Xinyu Xing;Fengyuan Xu;Wenfei Wu - 通讯作者:
Wenfei Wu
Xinyu Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinyu Xing', 18)}}的其他基金
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
- 批准号:
2045948 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
- 批准号:
2055320 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
- 批准号:
2225225 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
- 批准号:
2225234 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
- 批准号:
2219379 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
- 批准号:
1954466 - 财政年份:2020
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
- 批准号:
1718459 - 财政年份:2017
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
相似国自然基金
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
- 批准号:82301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant