Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses

协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御

基本信息

  • 批准号:
    2055320
  • 负责人:
  • 金额:
    $ 24.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

This project aims to harden machine learning based security defenses by improving their ability to handle dynamic changes. From data breaches to ransomware infections, the increasingly sophisticated attacks are posing a serious threat to Internet-enabled systems and their users. While machine learning has shown great promise to build the next generation of defense, these defense systems are vulnerable to the dynamic changes (or concept drift) in the data caused by attacker evolvement and behavior changes of benign players. Traditionally, detecting and mitigating the impact of concept drift requires significant efforts to label new data, which is challenging to scale up. In this project, the team of researchers will design novel schemes to improve the adaptability and resilience of learning-based defenses that require minimal labeling capacity. The core idea is to use self-supervised learning models, utilizing unlabeled data and obtaining supervision from the data itself. If successful, the project will provide the much-needed tools to measure, detect, and mitigate concept drift for security applications, including malware analysis, network intrusion detection, and bot detection.The team of researchers will first focus on measuring concept drift over longitudinal data. With a focus on real-world malware samples, the team will develop measurement tools to extract and characterize different types of concept drift to understand their patterns. In the next stage, the team will develop reactive methods to detect drifting samples via contrastive learning (a form of self-supervision), and methods to select drifting samples to facilitate efficient labeling. Finally, the team will move from reactive defense to proactive approaches. The plan is to use adversarial generative models (another form of self-supervision) to synthesize richer data and labels that mimic future mutations of attackers, which will be used to harden the defenses at the training stage. The proposed techniques are expected to reduce the data labeling costs for learning-based defenses and improve their long-term sustainability to protect users, organizations, and critical infrastructures. The team will also leverage this project to recruit and mentor underrepresented students, develop new course materials, and perform technology transfer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过提高处理动态变化的能力来强化基于机器学习的安全防御。从数据泄露到勒索软件感染,日益复杂的攻击对互联网系统及其用户构成了严重威胁。虽然机器学习在构建下一代防御方面显示出了巨大的希望,但这些防御系统很容易受到攻击者进化和良性参与者行为变化引起的数据动态变化(或概念漂移)的影响。传统上,检测和减轻概念漂移的影响需要付出巨大努力来标记新数据,而这在扩大规模方面具有挑战性。在该项目中,研究人员团队将设计新颖的方案,以提高需要最小标记能力的基于学习的防御的适应性和弹性。其核心思想是采用自监督学习模型,利用未标记的数据并从数据本身获得监督。如果成功,该项目将提供急需的工具来测量、检测和减轻安全应用程序的概念漂移,包括恶意软件分析、网络入侵检测和机器人检测。研究人员团队将首先专注于测量纵向概念漂移数据。该团队将重点关注现实世界的恶意软件样本,开发测量工具来提取和表征不同类型的概念漂移,以了解其模式。在下一阶段,该团队将开发通过对比学习(一种自我监督形式)检测漂移样本的反应方法,以及选择漂移样本以促进高效标记的方法。最后,团队将从被动防御转向主动防御。该计划是使用对抗性生成模型(另一种形式的自我监督)来合成更丰富的数据和标签,模仿攻击者未来的突变,这将用于在训练阶段强化防御。所提出的技术预计将降低基于学习的防御的数据标记成本,并提高其长期可持续性,以保护用户、组织和关键基础设施。该团队还将利用该项目来招募和指导代表性不足的学生、开发新的课程材料并进行技术转让。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinyu Xing其他文献

CGRED: class guided random early discarding
CGRED:类别引导随机早期丢弃
This paper is included in the Proceedings of the 30th USENIX Security Symposium.
本文收录于第 30 届 USENIX 安全研讨会论文集。
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xian Wu;Wenbo Guo;Hua Wei;Xinyu Xing
  • 通讯作者:
    Xinyu Xing
PDiff: Semantic-based Patch Presence Testing for Downstream Kernels
PDiff:下游内核基于语义的补丁存在测试
Your Online Interests: Pwned! A Pollution Attack Against Targeted Advertising
您的在线兴趣:Pwned!
ShadowBound: Efficient Heap Memory Protection Through Advanced Metadata Management and Customized Compiler Optimization
ShadowBound:通过高级元数据管理和定制编译器优化实现高效堆内存保护

Xinyu Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinyu Xing', 18)}}的其他基金

CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
  • 批准号:
    2045948
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
  • 批准号:
    2225225
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
  • 批准号:
    2225234
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
  • 批准号:
    2219379
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
  • 批准号:
    2221122
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
  • 批准号:
    1954466
  • 财政年份:
    2020
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
  • 批准号:
    1718459
  • 财政年份:
    2017
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了