EAGER: Live Reality: Sustainable and Up-to-Date Information Quality in Live Social Media through Continuous Evidence-Based Knowledge Acquisition
EAGER:实时现实:通过持续的循证知识获取,实时社交媒体中可持续且最新的信息质量
基本信息
- 批准号:2039653
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Social media have complemented traditional press with immediate reports and worldwide coverage. However, they also receive and propagate significant amounts of misinformation and disinformation such as fake news. A skillful mixture of verifiable facts and outrageous fiction, fake news aim to attract reader attention, make an immediate initial impact, and then quickly forgotten. Even as disposable novelty, fake news have had significant impact on real world events such as elections. For human readers and machine learning (ML) classifiers, distinguishing fake news from real news has been challenging due to their sophisticated construction, camouflaging fiction with facts, as well as continuously evolving by incorporating the newest and hottest topics as they mutate. The Live Reality project will track the evolution of fake news through continuous import of reliable, verified facts from authoritative sources, and separate the facts from fiction, to catch fake news in the act. The automated real-time tracking capability is a significant innovation compared to traditional ML classifiers generated from manually labeled training data, which are constrained to finding historical fake news, long after the fact.Given the short lifespan of disposable novelty (days or hours), catching fake news in the act requires significant innovation in two dimensions. First, the ML classifier must be continuously updated to recognize true novelty that have never been seen before. Second, the update must be sufficiently timely to catch disposable novelty before they expire, e.g., within hours of their initial dissemination. Continuous collection of live social media and authoritative sources will generate novel fake news and associated ground truth, which are integrated through the Evidence-Based Knowledge Acquisition (EBKA) approach, which adds reliable information from authoritative sources into a continuously adaptive teamed classifier to distinguish the verifiable facts from the fiction in fake news. As news topics evolve, fake news are expected to follow, and EBKA will generate and integrate new sub-models into the live teamed classifier to recognize the new topics. The EBKA approach will be demonstrated on live data containing fake news on a variety of topics, specifically disaster management such as the COVID-19 pandemic. Due to the disposable novelty nature of fake news, EBKA will be evaluated in two dimensions: classifier performance in terms of accuracy and precision, and timeliness of classifier identifying truly new fake news soon after their appearance in the real world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交媒体通过即时报道和全球覆盖对传统媒体进行了补充。然而,他们也接收和传播大量错误信息和虚假信息,例如假新闻。假新闻巧妙地融合了可证实的事实和令人发指的虚构故事,旨在吸引读者的注意力,立即产生初步影响,然后很快被遗忘。即使作为一次性的新奇事物,假新闻也对选举等现实世界事件产生了重大影响。对于人类读者和机器学习 (ML) 分类器来说,区分假新闻和真实新闻一直具有挑战性,因为假新闻结构复杂,用事实掩盖虚构,并且随着最新、最热门的话题不断变化而不断发展。 Live Reality项目将通过持续导入来自权威来源的可靠、经过验证的事实来跟踪假新闻的演变,并将事实与虚构分开,以在行为中捕捉假新闻。与根据手动标记的训练数据生成的传统机器学习分类器相比,自动实时跟踪功能是一项重大创新,传统机器学习分类器只能在事后很久才发现历史假新闻。鉴于一次性新奇事物的寿命很短(几天或几小时),在行为中捕捉假新闻需要在两个维度上进行重大创新。首先,机器学习分类器必须不断更新,以识别以前从未见过的真正的新奇事物。其次,更新必须足够及时,以便在一次性新颖性过期之前(例如在最初传播后的几个小时内)捕获它们。持续收集实时社交媒体和权威来源将产生新颖的假新闻和相关的事实真相,这些信息通过基于证据的知识获取(EBKA)方法进行整合,该方法将来自权威来源的可靠信息添加到持续自适应的组合分类器中,以区分假新闻和相关事实。假新闻中虚构的可验证事实。随着新闻主题的发展,假新闻预计也会随之而来,EBKA 将生成新的子模型并将其集成到实时组合分类器中以识别新主题。 EBKA 方法将在包含各种主题的虚假新闻的实时数据上进行演示,特别是 COVID-19 大流行等灾难管理。由于假新闻的一次性新颖性,EBKA将从两个维度进行评估:分类器在准确度和精确度方面的表现,以及分类器在真实世界出现后不久识别真正新假新闻的及时性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Generalizability of Fine-Tuned Models for Fake News Detection
探索假新闻检测微调模型的通用性
- DOI:10.1109/cic56439.2022.00022
- 发表时间:2022-12-01
- 期刊:
- 影响因子:0
- 作者:Abhijit Suprem;Sanjyot Vaidya;C. Pu
- 通讯作者:C. Pu
Constructive Interpretability with CoLabel: Corroborative Integration, Complementary Features, and Collaborative Learning
CoLabel 的建设性可解释性:佐证整合、互补特征和协作学习
- DOI:10.1109/cogmi56440.2022.00021
- 发表时间:2022-05-20
- 期刊:
- 影响因子:0
- 作者:Abhijit Suprem;Sanjyot Vaidya;Suma Cherkadi;Purva Singh;J. E. Ferreira;C. Pu
- 通讯作者:C. Pu
Evolution of Knowledge in Social Media and Their Relationship to an Evolving Real World
社交媒体知识的演变及其与不断变化的现实世界的关系
- DOI:10.1109/cogmi58952.2023.00013
- 发表时间:2023-11-01
- 期刊:
- 影响因子:0
- 作者:C. Pu;Abhijit Suprem;A. Musaev;J. Ferreira
- 通讯作者:J. Ferreira
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Calton Pu其他文献
Approaches for service deployment
服务部署方法
- DOI:
10.1002/marc.201500587 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:3.2
- 作者:
Qinyi Wu;Calton Pu;Wenchang Yan;Gueyoung Jung;Georgia Tech;Munindar P Singh - 通讯作者:
Munindar P Singh
Collaborative Computing: Networking, Applications and Worksharing
协作计算:网络、应用程序和工作共享
- DOI:
10.1007/978-3-642-03354-4 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
James Joshi;Elisa Bertino;Calton Pu;H. Ramampiaro - 通讯作者:
H. Ramampiaro
JTangCSB: A Cloud Service Bus for Cloud and Enterprise Application Integration
JTangCSB:用于云和企业应用集成的云服务总线
- DOI:
10.1109/mic.2014.62 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xingjian Lu;Calton Pu;Zhaohui Wu;Hanwei Chen - 通讯作者:
Hanwei Chen
Buffer overflows: attacks and defenses for the vulnerability of the decade
缓冲区溢出:十年来漏洞的攻击与防御
- DOI:
10.1109/discex.2000.821514 - 发表时间:
2000-01-25 - 期刊:
- 影响因子:0
- 作者:
Crispin Cowan;Perry Wagle;Calton Pu;Steve Beattie;Jonathan Walpole - 通讯作者:
Jonathan Walpole
Buffer Overflows : Attacks and Defenses for the Vulnerability of the Decade *
缓冲区溢出:十年来漏洞的攻击和防御 *
- DOI:
10.1109/discex.2000.821514 - 发表时间:
2000-01-25 - 期刊:
- 影响因子:0
- 作者:
Crispin Cowan;Perry Wagle;Calton Pu;Steve Beattie;Jonathan Walpole - 通讯作者:
Jonathan Walpole
Calton Pu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Calton Pu', 18)}}的其他基金
HNDS-I: Collaborative Research: Developing a Data Platform for Analysis of Nonprofit Organizations
HNDS-I:协作研究:开发用于分析非营利组织的数据平台
- 批准号:
2024320 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: Tracking and Evaluation of the Coronavirus (COVID-19) Epidemic Propagation by Finding and Maintaining Live Knowledge in Social Media
RAPID:通过在社交媒体中查找和维护实时知识来跟踪和评估冠状病毒(COVID-19)的流行传播
- 批准号:
2026945 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
1st US-Japan Workshop Enabling Global Collaborations in Big Data Research; June, 2017, Atlanta, GA
第一届美日研讨会促进大数据研究的全球合作;
- 批准号:
1741034 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RCN: SAVI: Adaptive Management and Use of Resilient Infrastructures in Smart Cities: Support for Global Collaborative Research on Real-Time Analytics of Heterogeneous Big Data
RCN:SAVI:智慧城市弹性基础设施的适应性管理和使用:支持异构大数据实时分析的全球协作研究
- 批准号:
1550379 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: An Exploratory Study of Multi-Hazard Management through Multi-Source Integration of Physical and Social Sensors
EAGER:通过物理和社会传感器的多源集成进行多危害管理的探索性研究
- 批准号:
1402266 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CSR: Small: Lightning in Clouds: Detection and Characterization of Very Short Bottlenecks
CSR:小:云中闪电:极短瓶颈的检测和表征
- 批准号:
1421561 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SAVI: EAGER: for Global Research on Applying Information Technology to Support Effective Disaster Management (GRAIT-DM)
SAVI:EAGER:应用信息技术支持有效灾害管理的全球研究 (GRAIT-DM)
- 批准号:
1250260 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: Automating Emergency Data and Metadata Management to Support Effective Short Term and Long Term Disaster Recovery Efforts
RAPID:自动化应急数据和元数据管理,支持有效的短期和长期灾难恢复工作
- 批准号:
1138666 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CSR:Small: Multi-Bottlenecks: What They Are and How to Find Them
CSR:小:多瓶颈:它们是什么以及如何找到它们
- 批准号:
1116451 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
II-NEW: Collaborative Research: Spam Processing, Archiving, and Monitoring Community Facility (SPAM Commons)
II-新:协作研究:垃圾邮件处理、归档和监控社区设施 (SPAM Commons)
- 批准号:
0855180 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
基于计算机视觉的北京老旧居住建筑立面品质测评与生成式更新设计研究
- 批准号:52378022
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
立体化居住环境对幸福感的结构化影响及时空效应研究
- 批准号:42371215
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
大城市新市民居住迁移的时空特征、机理及对策研究-以广州市为例
- 批准号:42371208
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
城市更新影响域内居住群体社会空间分异与融合机制研究
- 批准号:72374166
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
融合三维建筑格局和绿地气动特征的居住区热环境时空分布与形成机制
- 批准号:32301658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CNS Core: Small: Collaborative: Content-Based Viewport Prediction Framework for Live Virtual Reality Streaming
CNS 核心:小型:协作:用于直播虚拟现实流的基于内容的视口预测框架
- 批准号:
2109982 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Mobile Virtual Simulation Training in Essential Newborn Care for Healthcare Workers in Low and Middle Income Countries
为低收入和中等收入国家的医护人员提供基本新生儿护理的移动虚拟模拟培训
- 批准号:
10268053 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Mobile Virtual Simulation Training in Essential Newborn Care for Healthcare Workers in Low and Middle Income Countries
为低收入和中等收入国家的医护人员提供基本新生儿护理的移动虚拟模拟培训
- 批准号:
10489852 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Advancing emergency medicine training with remote stereoscopic livestream technology
利用远程立体直播技术推进急诊医学培训
- 批准号:
10325314 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Learning 4.0: Live Collaborative Learning in Virtual Reality
学习 4.0:虚拟现实中的实时协作学习
- 批准号:
69577 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Study