RAPID: Automating Emergency Data and Metadata Management to Support Effective Short Term and Long Term Disaster Recovery Efforts
RAPID:自动化应急数据和元数据管理,支持有效的短期和长期灾难恢复工作
基本信息
- 批准号:1138666
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal #: CNS 11-38666PI(s): Pu, CaltonInstitution: Georgia Institute of TechnologyTitle: RAPID: Automating Emergency Data and Metadata Management to Support Effective Short and Long Term Disaster Recovery EffortsProject Proposed:This RAPID project, collecting, processing, and disseminating appropriate sensor data, aims to contribute to an effective recovery. The work addresses the challenges of sensor data flood during an emergency, through integration, evaluation, and enhancement of current data management tools, particularly with respect to meta-data. Automation of data and meta-data collection, processing, and dissemination are expected to alleviate the time pressure on human operators. The fundamental tools support quality information dimensions such as provenance, timeliness, security, privacy, and confidentiality, enabling an appropriate interpretation of the sensor data in the long term. For the short term, the tools are expected to help relief the workers as data producers and consumers; for the long term, they will provide high quality information for disaster recovery decision support systems. Additionally, the cloud-based system architecture and implementation of the CERCS cluster of Open Cirrus provide high availability and ease of access for recovery efforts in Japan as well as for researchers worldwide. The integration of techniques from several information dimensions (e.g., data provenance, surety, and privacy) and the application of code generation techniques to automate the data and metadata management tools constitute the intellectual merit of the proposed research. New challenges will be encountered in the potential interferences among the quality of information dimensions. It is also a new challenge to apply code generation techniques in the adaptation of software tools to accommodate changes imposed by environmental damages and contextual as well as cultural differences among countries.The investigator collaborates with Prof. Masaru Kitsuregawa from the University of Tokyo, Japan, a leading researcher in data management. He is the first database researcher from Asia to win the ACM SOGMOD Innovation Award (2009). In addition to a letter of support and biographical sketches of the Japanese collaborator, a support letter has been submitted by Intel to OISE, CISE and Engineering. Intel has offered access to the Intel Open Cirrus cluster to conduct the research.Broader Impacts: The proposed tools should contribute to improve both the quantity and quality of data being collected by a variety of sensors, thus improving the effectiveness of short and long term decision making. For example, measured radiation levels in agricultural products can serve as an indication of spreading radioactive contaminations that complement the direct readings of radiation in soil samples. The project enables informed decisions based on precise interpretation of real sensor data that may improve the quality of life at both human and social levels, while reducing costs. The project will also contribute in graduate student education.
提案编号:CNS 11-38666PI(s):Pu,卡尔顿机构:佐治亚理工学院标题:RAPID:自动化应急数据和元数据管理以支持有效的短期和长期灾难恢复工作项目建议:该 RAPID 项目收集、处理和传播适当的传感器数据,旨在有助于有效的恢复。这项工作通过集成、评估和增强当前的数据管理工具,特别是在元数据方面,解决了紧急情况下传感器数据泛滥的挑战。数据和元数据收集、处理和传播的自动化有望减轻人类操作员的时间压力。基本工具支持质量信息维度,例如来源、及时性、安全性、隐私和机密性,从而能够长期对传感器数据进行适当的解释。从短期来看,这些工具预计将有助于减轻作为数据生产者和消费者的工人的负担;从长远来看,它们将为灾难恢复决策支持系统提供高质量的信息。此外,基于云的系统架构和 Open Cirrus CERCS 集群的实施为日本以及世界各地的研究人员的恢复工作提供了高可用性和易于访问性。来自多个信息维度(例如数据来源、保证性和隐私)的技术的集成以及代码生成技术的应用以自动化数据和元数据管理工具构成了拟议研究的智力优点。信息质量维度之间的潜在干扰将遇到新的挑战。将代码生成技术应用于软件工具的调整以适应环境破坏以及国家之间的背景和文化差异所带来的变化也是一个新的挑战。研究人员与日本东京大学的 Masaru Kitsurekawa 教授合作,数据管理领域的领先研究员。他是亚洲第一位获得 ACM SOGMOD 创新奖(2009 年)的数据库研究员。除了日本合作者的支持信和简历之外,英特尔还向 OISE、CISE 和 Engineering 提交了一封支持信。英特尔已提供对英特尔 Open Cirrus 集群的访问权限来开展这项研究。 更广泛的影响:所提出的工具应有助于提高各种传感器收集的数据的数量和质量,从而提高短期和长期决策的有效性制作。例如,测量农产品中的辐射水平可以作为放射性污染扩散的指示,补充土壤样品中辐射的直接读数。该项目能够根据对真实传感器数据的精确解释做出明智的决策,从而提高人类和社会层面的生活质量,同时降低成本。该项目还将为研究生教育做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Calton Pu其他文献
JTangCSB: A Cloud Service Bus for Cloud and Enterprise Application Integration
JTangCSB:用于云和企业应用集成的云服务总线
- DOI:
10.1109/mic.2014.62 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xingjian Lu;Calton Pu;Zhaohui Wu;Hanwei Chen - 通讯作者:
Hanwei Chen
Approaches for service deployment
服务部署方法
- DOI:
10.1002/marc.201500587 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:3.2
- 作者:
Qinyi Wu;Calton Pu;Wenchang Yan;Gueyoung Jung;Georgia Tech;Munindar P Singh - 通讯作者:
Munindar P Singh
Collaborative Computing: Networking, Applications and Worksharing
协作计算:网络、应用程序和工作共享
- DOI:
10.1007/978-3-642-03354-4 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
James Joshi;Elisa Bertino;Calton Pu;H. Ramampiaro - 通讯作者:
H. Ramampiaro
Buffer overflows: attacks and defenses for the vulnerability of the decade
缓冲区溢出:十年来漏洞的攻击与防御
- DOI:
10.1109/discex.2000.821514 - 发表时间:
2000-01-25 - 期刊:
- 影响因子:0
- 作者:
Crispin Cowan;Perry Wagle;Calton Pu;Steve Beattie;Jonathan Walpole - 通讯作者:
Jonathan Walpole
Buffer Overflows : Attacks and Defenses for the Vulnerability of the Decade *
缓冲区溢出:十年来漏洞的攻击和防御 *
- DOI:
10.1109/discex.2000.821514 - 发表时间:
2000-01-25 - 期刊:
- 影响因子:0
- 作者:
Crispin Cowan;Perry Wagle;Calton Pu;Steve Beattie;Jonathan Walpole - 通讯作者:
Jonathan Walpole
Calton Pu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Calton Pu', 18)}}的其他基金
HNDS-I: Collaborative Research: Developing a Data Platform for Analysis of Nonprofit Organizations
HNDS-I:协作研究:开发用于分析非营利组织的数据平台
- 批准号:
2024320 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER: Live Reality: Sustainable and Up-to-Date Information Quality in Live Social Media through Continuous Evidence-Based Knowledge Acquisition
EAGER:实时现实:通过持续的循证知识获取,实时社交媒体中可持续且最新的信息质量
- 批准号:
2039653 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RAPID: Tracking and Evaluation of the Coronavirus (COVID-19) Epidemic Propagation by Finding and Maintaining Live Knowledge in Social Media
RAPID:通过在社交媒体中查找和维护实时知识来跟踪和评估冠状病毒(COVID-19)的流行传播
- 批准号:
2026945 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
1st US-Japan Workshop Enabling Global Collaborations in Big Data Research; June, 2017, Atlanta, GA
第一届美日研讨会促进大数据研究的全球合作;
- 批准号:
1741034 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RCN: SAVI: Adaptive Management and Use of Resilient Infrastructures in Smart Cities: Support for Global Collaborative Research on Real-Time Analytics of Heterogeneous Big Data
RCN:SAVI:智慧城市弹性基础设施的适应性管理和使用:支持异构大数据实时分析的全球协作研究
- 批准号:
1550379 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
EAGER: An Exploratory Study of Multi-Hazard Management through Multi-Source Integration of Physical and Social Sensors
EAGER:通过物理和社会传感器的多源集成进行多危害管理的探索性研究
- 批准号:
1402266 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CSR: Small: Lightning in Clouds: Detection and Characterization of Very Short Bottlenecks
CSR:小:云中闪电:极短瓶颈的检测和表征
- 批准号:
1421561 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
SAVI: EAGER: for Global Research on Applying Information Technology to Support Effective Disaster Management (GRAIT-DM)
SAVI:EAGER:应用信息技术支持有效灾害管理的全球研究 (GRAIT-DM)
- 批准号:
1250260 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CSR:Small: Multi-Bottlenecks: What They Are and How to Find Them
CSR:小:多瓶颈:它们是什么以及如何找到它们
- 批准号:
1116451 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
II-NEW: Collaborative Research: Spam Processing, Archiving, and Monitoring Community Facility (SPAM Commons)
II-新:协作研究:垃圾邮件处理、归档和监控社区设施 (SPAM Commons)
- 批准号:
0855180 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
全自动化运行城市轨道交通乘务计划优化问题研究
- 批准号:72301192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单浆细胞筛选新技术的自动化抗体发现平台构建及工作机制研究
- 批准号:32301266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模型-自动化微流控芯片技术的三代EGFR-TKI耐药后个体化药物高效筛选平台的构建及应用
- 批准号:82304435
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开发2’-氟阿拉伯糖核酸的自动化Sanger测序新方法
- 批准号:22307058
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
- 批准号:52306006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mining Social Media Big Data for Toxicovigilance: Automating the Monitoring of Prescription Medication Abuse via Natural Language Processing and Machine Learning Methods
挖掘社交媒体大数据进行毒物警戒:通过自然语言处理和机器学习方法自动监测处方药滥用
- 批准号:
10001871 - 财政年份:2019
- 资助金额:
$ 5万 - 项目类别:
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1903963 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1814271 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1526678 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Automating Relevance and Trust Detection in Social Media Data for Emergency Response
CHS:小型:协作研究:自动化社交媒体数据中的相关性和信任检测以进行紧急响应
- 批准号:
1526542 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant