EAGER: An Exploratory Study of Multi-Hazard Management through Multi-Source Integration of Physical and Social Sensors

EAGER:通过物理和社会传感器的多源集成进行多危害管理的探索性研究

基本信息

  • 批准号:
    1402266
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

Natural and man-made disasters can cause significant material damages and human suffering. For example, Superstorm Sandy of 2012 is estimated to have caused more than $68 billion in damages and killed at least 286 people in seven countries. Improving the preparation for, response to, and recovery from disasters can reduce damages, relieve human suffering, and speed up recovery. Among disasters, a multi-hazard is a sequence of disasters in which the first disaster causes the subsequent disasters, making it far more difficult for emergency response teams to handle all of them. For example, the March 11, 2011, Tohoku, Japan, earthquake triggered an unprecedented tsunami, which led to flooding at, and partial meltdown of, the Fukushima Daiichi Nuclear Power Plant. A more frequent example of multi-hazards is landslides, which can be triggered by many causes including earthquakes, rainfall, and man-made environmental changes.While the detection of a single disaster usually only requires one kind of dedicated sensor, for example, seismographs can detect earthquakes reliably, multi-hazards often require a combination of various kinds of sensors for the detection of the multiple events in the sequence. Indeed, the detection of multi-events in general and multi-hazards in particular is a non-trivial problem due to the various kinds of events involved and the large number of combinations that make offline combinatorial analysis impractical. In the case of landslides, their detection is complicated further by the several possible and unrelated causes of landslides (e.g., earthquake and rainfall), each requiring a different kind of sensor.In this project, the team is building a landslide detection system, called LITMUS, that integrates data from two physical sensors -- USGS Global Seismographic Network (GSN), NASA Tropical Rainfall Monitoring Mission (TRMM) -- with data from pervasive social media platforms. This integration of multiple heterogeneous sensors in LITMUS is an illustrative example of successfully applying big data software tools and analytics techniques to solve real-world problems. Specifically, the team is extending geo-tagging to relevant data items, which are filtered in several stages to reduce noise and false positives, and applying machine learning, information retrieval, and semantic web techniques to each data stream. Finally, filtered social media data are being cross-referenced with physical events from the same geo-location to generate supporting evidence for landslide detection. A LITMUS prototype has been detecting more landslides around the world than traditional landslide reporting systems: tests with live streaming data show that the combined result is a list of landslide events that has included the USGS authoritative list, plus many other confirmed landslides around the world.
自然灾害和人为灾害可能造成重大物质损失和人类痛苦。例如,2012 年的超级风暴桑迪估计在 7 个国家造成了超过 680 亿美元的损失,并造成至少 286 人死亡。改善灾难的准备、响应和恢复可以减少损失、减轻人类痛苦并加快恢复速度。在灾害中,多重灾害是指一系列灾害,其中第一个灾害导致后续灾害,使得应急响应团队处理所有灾害变得更加困难。例如,2011年3月11日,日本东北部地震引发了史无前例的海啸,导致福岛第一核电站发生洪水和部分熔毁。多灾害的一个更常见的例子是山体滑坡,它可以由多种原因引发,包括地震、降雨和人为环境变化。而单一灾害的检测通常只需要一种专用传感器,例如地震仪为了可靠地检测地震,多种灾害通常需要组合各种传感器来检测序列中的多个事件。事实上,由于涉及多种类型的事件和大量的组合,使得离线组合分析变得不切实际,因此一般情况下的多事件和特别是多危害的检测是一个不平凡的问题。就山体滑坡而言,由于山体滑坡的几种可能且不相关的原因(例如地震和降雨),其检测变得更加复杂,每种原因都需要不同类型的传感器。在这个项目中,该团队正在构建一个山体滑坡检测系统,称为LITMUS,它将来自两个物理传感器——美国地质调查局全球地震网络(GSN)、美国宇航局热带降雨监测任务(TRMM)——的数据与来自普遍社交媒体平台的数据集成在一起。 LITMUS 中多个异构传感器的集成是成功应用大数据软件工具和分析技术来解决现实世界问题的说明性示例。具体来说,该团队正在将地理标记扩展到相关数据项,这些数据项会分几个阶段进行过滤,以减少噪音和误报,并将机器学习、信息检索和语义网络技术应用于每个数据流。最后,经过过滤的社交媒体数据与来自同一地理位置的物理事件进行交叉引用,以生成山体滑坡检测的支持证据。与传统的山体滑坡报告系统相比,LITMUS 原型在世界各地检测到更多的山体滑坡:实时流数据测试表明,综合结果是一份山体滑坡事件列表,其中包括 USGS 权威列表,以及世界各地许多其他已确认的山体滑坡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Calton Pu其他文献

JTangCSB: A Cloud Service Bus for Cloud and Enterprise Application Integration
JTangCSB:用于云和企业应用集成的云服务总线
  • DOI:
    10.1109/mic.2014.62
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingjian Lu;Calton Pu;Zhaohui Wu;Hanwei Chen
  • 通讯作者:
    Hanwei Chen
Approaches for service deployment
服务部署方法
  • DOI:
    10.1002/marc.201500587
  • 发表时间:
    2024-09-13
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Qinyi Wu;Calton Pu;Wenchang Yan;Gueyoung Jung;Georgia Tech;Munindar P Singh
  • 通讯作者:
    Munindar P Singh
Collaborative Computing: Networking, Applications and Worksharing
协作计算:网络、应用程序和工作共享
Buffer overflows: attacks and defenses for the vulnerability of the decade
缓冲区溢出:十年来漏洞的攻击与防御
Buffer Overflows : Attacks and Defenses for the Vulnerability of the Decade *
缓冲区溢出:十年来漏洞的攻击和防御 *

Calton Pu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Calton Pu', 18)}}的其他基金

HNDS-I: Collaborative Research: Developing a Data Platform for Analysis of Nonprofit Organizations
HNDS-I:协作研究:开发用于分析非营利组织的数据平台
  • 批准号:
    2024320
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Live Reality: Sustainable and Up-to-Date Information Quality in Live Social Media through Continuous Evidence-Based Knowledge Acquisition
EAGER:实时现实:通过持续的循证知识获取,实时社交媒体中可持续且最新的信息质量
  • 批准号:
    2039653
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Tracking and Evaluation of the Coronavirus (COVID-19) Epidemic Propagation by Finding and Maintaining Live Knowledge in Social Media
RAPID:通过在社交媒体中查找和维护实时知识来跟踪和评估冠状病毒(COVID-19)的流行传播
  • 批准号:
    2026945
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
1st US-Japan Workshop Enabling Global Collaborations in Big Data Research; June, 2017, Atlanta, GA
第一届美日研讨会促进大数据研究的全球合作;
  • 批准号:
    1741034
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RCN: SAVI: Adaptive Management and Use of Resilient Infrastructures in Smart Cities: Support for Global Collaborative Research on Real-Time Analytics of Heterogeneous Big Data
RCN:SAVI:智慧城市弹性基础设施的适应性管理和使用:支持异构大数据实时分析的全球协作研究
  • 批准号:
    1550379
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CSR: Small: Lightning in Clouds: Detection and Characterization of Very Short Bottlenecks
CSR:小:云中闪电:极短瓶颈的检测和表征
  • 批准号:
    1421561
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SAVI: EAGER: for Global Research on Applying Information Technology to Support Effective Disaster Management (GRAIT-DM)
SAVI:EAGER:应用信息技术支持有效灾害管理的全球研究 (GRAIT-DM)
  • 批准号:
    1250260
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Automating Emergency Data and Metadata Management to Support Effective Short Term and Long Term Disaster Recovery Efforts
RAPID:自动化应急数据和元数据管理,支持有效的短期和长期灾难恢复工作
  • 批准号:
    1138666
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CSR:Small: Multi-Bottlenecks: What They Are and How to Find Them
CSR:小:多瓶颈:它们是什么以及如何找到它们
  • 批准号:
    1116451
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
II-NEW: Collaborative Research: Spam Processing, Archiving, and Monitoring Community Facility (SPAM Commons)
II-新:协作研究:垃圾邮件处理、归档和监控社区设施 (SPAM Commons)
  • 批准号:
    0855180
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多组学智能分析与光电生物传感系统对mTBI早期鉴识的探索性研究
  • 批准号:
    82302120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
40Hz光声刺激Gamma神经振荡夹带技术干预认知障碍的探索性研究
  • 批准号:
    82371906
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
iPSC分化软骨细胞气管内在体植入重建气道支撑功能的探索性研究
  • 批准号:
    82370097
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
闭合式双金属催化剂的设计及用于环氧烷烃与一氧化碳交替共聚的探索性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
引力波回声的探索性研究
  • 批准号:
    12275276
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: GASHES: Getz Antarctic Submarine Hydrothermal Vents Exploratory Study
合作研究:EAGER:GASHES:Getz 南极海底热液喷口探索性研究
  • 批准号:
    2303979
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: GASHES: Getz Antarctic Submarine Hydrothermal Vents Exploratory Study
合作研究:EAGER:GASHES:Getz 南极海底热液喷口探索性研究
  • 批准号:
    2303978
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Multi-level Research into I-Corps' Impact on Entrepreneurial Development: An Exploratory Study
EAGER:I-Corps 对创业发展影响的多层次研究:一项探索性研究
  • 批准号:
    1940249
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: An Exploratory Study of R&D Investment on Innovation using Business R&D and Innovation Survey (BRDIS) Data
EAGER:R 的探索性研究
  • 批准号:
    2005956
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: An Exploratory Study of R&D Investment on Innovation using Business R&D and Innovation Survey (BRDIS) Data
EAGER:R 的探索性研究
  • 批准号:
    1551721
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了