EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education

EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验

基本信息

  • 批准号:
    2039289
  • 负责人:
  • 金额:
    $ 14.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

With the exponential increase in cybercrimes in recent years, the need for Computer Forensics and Digital Evidence (CFDE) expertise is rapidly growing. A qualified CFDE professional needs to have deep knowledge of digital forensic evidence identification, acquisition, and examination, as well as the ability to present and explain digital forensic evidence in courtrooms. However, there are major barriers to instilling the core knowledge of CFDE and practice of cyber investigation techniques in a diverse body of interested students. For example, a systematic approach for collecting, organizing, and analyzing digital forensic evidence is lacking. This project will engage novel interdisciplinary perspectives, including artificial intelligence (AI), cybersecurity, criminal justice, and computer science to re-examine the emerging CFDE field with a formal approach. This project will then explore visualized and explainable AI to improve students’ learning experience in digital forensics education at Minority-Serving Institutions (MSIs) including Historically Black Colleges and Universities (HBCUs).The project brings together faculty from the University of Baltimore, an MSI, Bowie State University, one of the oldest HBCUs in Maryland, and the University of Missouri Kansas City, who have synergistic expertise in digital forensics, cybersecurity, AI, law, and computer science. The project will leverage graph-based AI models to provide students with visualized depictions of forensic evidence, the patterns of evidence, and the connections among the evidence. It will also explore explainable AI to support the development of forensic evidence that is accountable and presentable to courts, and develop AI-aided CFDE instructional materials. The project will address research questions at the intersection of AI, CFDE, and education including the following: (a) How do graph-based models store, retrieve, and present digital forensic evidence? (b) How do graph-based AI models discover new evidence and to what extent should we trust AI-discovered evidence/patterns? (c) How can knowledge and techniques of AI-assisted investigation be infused into CFDE instructional materials, and to what extent do the materials improve students’ learning experiences? Learning materials will be made available to both the CFDE and data science communities. This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,随着网络犯罪呈指数级增长,对计算机取证和数字证据 (CFDE) 专业知识的需求迅速增长。合格的 CFDE 专业人员需要对数字取证证据识别、获取和检查以及数字取证证据拥有深入的了解。然而,向感兴趣的不同群体灌输 CFDE 的核心知识和网络调查技术的实践存在重大障碍,例如收集、组织和分析的系统方法。数字分析法医证据该项目将采用新颖的跨学科视角,包括人工智能(AI)、网络安全、刑事司法和计算机科学,以正式的方法重新审视新兴的 CFDE 领域,然后探索可视化和可解释的人工智能以改进。学生在包括历史黑人学院和大学 (HBCU) 在内的少数族裔服务机构 (MSI) 中的数字取证教育学习体验。该项目汇集了来自 MSI 巴尔的摩大学、历史最悠久的黑人大学之一鲍伊州立大学的教师马里兰州的 HBCU 和密苏里大学堪萨斯城分校在数字取证、网络安全、人工智能、法律和计算机科学方面拥有协同专业知识,该项目将利用基于图形的人工智能模型为学生提供取证证据的可视化表示。它还将探索可解释的人工智能,以支持对法庭负责和可呈现的法医证据的开发,并开发人工智能辅助的 CFDE 教学材料。该项目将解决交叉点的研究问题。人工智能, CFDE 和教育包括以下内容:(a)基于图的模型如何存储、检索和呈现数字取证证据(b)基于图的人工智能模型如何发现新证据以及我们应该在多大程度上信任人工智能发现的证据? (c) 如何将人工智能辅助调查的知识和技术融入 CFDE 教学材料中,这些材料将在多大程度上改善学生的学习体验?该项目得到了社区的支持。安全可信网络空间 (SaTC) 计划的一项特别举措,旨在促进网络安全、人工智能和教育领域之间新的、以前未探索过的合作。SaTC 计划与联邦网络安全研究与发展战略计划和国家隐私保持一致。研究战略旨在保护和维护网络系统不断增长的社会和经济效益,同时确保安全和隐私。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weifeng Xu其他文献

Online whole-stage gait planning method for biped robots based on improved Variable Spring-Loaded Inverted Pendulum with Finite-sized Foot (VSLIP-FF) model.
基于改进的有限足可变弹簧倒立摆(VSLIP-FF)模型的双足机器人在线全阶段步态规划方法。
  • DOI:
    10.1016/j.isatra.2022.10.012
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Sicheng Xie;Xinyu Li;Liang Gao;Ling Fu;Li Jing;Weifeng Xu
  • 通讯作者:
    Weifeng Xu
On complete consistency for the weighted estimator of nonparametric regression models
非参数回归模型加权估计的完全一致性
Reconstructing Android User Behavior through Timestamped State Models
通过时间戳状态模型重构 Android 用户行为
Low-Dose 68 Ga-PSMA Prostate PET/MRI Imaging Using Deep Learning Based On MR Priors
使用基于 MR 先验的深度学习进行低剂量 68 Ga-PSMA 前列腺 PET/MRI 成像
  • DOI:
    10.21203/rs.3.rs-972414/v1
  • 发表时间:
    2021-10-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fuquan Deng;Xiaoyuan Li;Feng Yang;Hongwei Sun;Jianmin Yuan;Qiang He;Weifeng Xu;Yongfeng Yang;Dong Liang;Xin Liu;Hairong Zheng;Zhanli Hu
  • 通讯作者:
    Zhanli Hu
Transposition mechanism of ISApl1—the determinant of colistin resistance dissemination
ISApl1的转座机制——粘菌素耐药性传播的决定因素
  • DOI:
    10.1128/aac.01231-23
  • 发表时间:
    2024-01-30
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Wei Li;Zhien He;Wei Di;Weifeng Xu;Yujie Li;Baolin Sun
  • 通讯作者:
    Baolin Sun

Weifeng Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weifeng Xu', 18)}}的其他基金

Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333949
  • 财政年份:
    2023
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
  • 批准号:
    2335624
  • 财政年份:
    2023
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
  • 批准号:
    2335807
  • 财政年份:
    2023
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
EAGER: SaTC-EDU: Artificial Intelligence for Cybersecurity Education via a Machine Learning-Enabled Security Knowledge Graph
EAGER:SaTC-EDU:通过机器学习支持的安全知识图进行网络安全教育的人工智能
  • 批准号:
    2114789
  • 财政年份:
    2021
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114920
  • 财政年份:
    2021
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Learning Platform and Education Curriculum for Artificial Intelligence-Driven Socially-Relevant Cybersecurity
合作研究:EAGER:SaTC-EDU:人工智能驱动的社会相关网络安全的学习平台和教育课程
  • 批准号:
    2114982
  • 财政年份:
    2021
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了