Modeling the Structural and Mechanical Properties of Tissue During Zebrafish Tailbud Elongation
模拟斑马鱼尾芽伸长过程中组织的结构和力学特性
基本信息
- 批准号:2102789
- 负责人:
- 金额:$ 77.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cells need to move collectively in nearly all biological processes at the tissue scale. One of the most significant challenges to understanding collective cell motion is determining how single-cell motility strategies affect collective cell behavior at the tissue level. For example, do cells actively sense the direction of motion of their neighbors, or do cells primarily rely on cell-cell adhesion and repulsion from their neighbors to move collectively? To understand the mapping from single-cell properties to collective migration, the PI proposes a combined experimental and computational approach to investigate collective cell migration during convergent extension processes in the developing zebrafish spinal column. Using confocal microscopy and genetic variants, the PI will measure how alterations to cell-cell adhesion and planar cell polarity alter the flow of cells in three dimensions. He will then simulate convergent extension processes in the developing zebrafish spinal column using the deformable particle (DP) model in two and three spatial dimensions in realistic boundary conditions that are both deformable and contractile. The DP model also makes it possible to systematically vary the cell shape, cell-cell adhesion, and single-cell motility strategy. The PI will compare the results of the simulations to those obtained from 3D imaging of cell motion and shape of both wildtype and mutant zebrafish embryos. The proposed work will provide two significant advances to our understanding of collective cell motion: (1) how can we map single-cell properties to features of collective cell migration, and (2) what is a sufficient degree of model complexity to capture important features of collective cell migration? Currently, models for collective cell migration do not model true cell deformability and realistic cell motility strategies, but they can qualitatively capture several aspects of collective cell migration. These proposed simulations of deformable particles in both two and three dimensions, along with three-dimensional imaging of live tissue, will allow the team to determine what model ingredients are required to quantitatively describe collective cell migration. This project also includes a number of education and outreach activities that leverage the PIs' involvement in the Integrated Graduate Program in Physical and Engineering Biology. Initiatives will include mentoring high school and undergraduate students in research, developing a course module on computational modeling of cell migration during zebrafish spinal column development, and hosting short courses aimed at improving the presentation of scientific topics to non-scientific audiences by graduate students.The PI proposes coordinated experimental and computational studies to understand the role of cell shape change, motility strategy, and adhesion on collective cell motion during the convergent extension process in the elongating tail bud of zebrafish embryos. The PI will develop novel deformable particle (DP) model simulations in dynamic, deformable boundaries in both two and three spatial dimensions, which can quantitatively describe cell- and tissue-level deformation of developing zebrafish embryos and predict the effect of changes to single-cell biophysical parameters on collective cell motion. Complementary experiments will be performed on zebrafish embryos with varied cell motility and cell-cell adhesion through mutations to the planar cell polarity pathway and cadherin-mediated adhesion that enable the predictions of the DP model to be tested experimentally.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞几乎需要在组织尺度上几乎所有生物过程中集体移动。理解集体细胞运动的最重要挑战之一是确定单细胞运动策略如何影响组织水平的集体细胞行为。例如,细胞会积极地感知其邻居的运动方向,还是主要依赖细胞 - 细胞粘附和邻居的抑制来集体运动?为了了解从单细胞性质到集体迁移的映射,PI提出了一种合并的实验和计算方法,以研究在发育中的斑马鱼脊柱中收敛扩展过程中的集体细胞迁移。使用共聚焦显微镜和遗传变异,PI将测量细胞细胞粘附的改变和平面细胞极性如何改变三维细胞的流动。然后,他将使用可变形粒子(DP)模型在两个和三个空间维度中使用可变形和收缩的两个空间维度中的可变形粒子(DP)模型模拟斑马鱼脊柱中的收敛扩展过程。 DP模型还可以系统地改变细胞形状,细胞 - 细胞粘附和单细胞运动策略。 PI将将模拟的结果与从野生型和突变斑马鱼胚胎的细胞运动和形状的3D成像获得的结果进行比较。提出的工作将为我们对集体细胞运动的理解提供两个重大进展:(1)我们如何将单细胞特性映射到集体细胞迁移的特征,以及(2)什么是足够的模型复杂性来捕获集体细胞迁移的重要特征?当前,集体细胞迁移的模型不能模拟真实的细胞变形性和逼真的细胞运动策略,但它们可以定性地捕获集体细胞迁移的几个方面。这些提出的对两个和三维中可变形颗粒的模拟,以及对活组织的三维成像,将使团队能够确定需要哪些模型成分来定量描述集体细胞迁移。该项目还包括许多教育和外展活动,这些活动利用了PIS参与物理和工程生物学综合研究生计划。倡议将包括指导高中和本科生研究,开发一个课程模块,以对斑马鱼脊柱开发期间的细胞迁移进行计算模型,并托管旨在改善科学主题向非科学受众介绍的简短课程。斑马鱼胚胎的拉长尾芽中的延伸过程。 PI将在两个和三个空间尺寸的动态,可变形边界中开发新颖的可变形粒子(DP)模型模拟,这些粒子可以定量描述斑马鱼胚胎的细胞和组织水平变形,并预测单细胞生物物质参数对集体细胞运动的变化的影响。通过对平面细胞极性途径和钙粘蛋白介导的粘附的突变,将对具有不同细胞运动性和细胞细胞粘附的斑马鱼胚胎进行互补实验,从而使DP模型的预测能够在实验上进行测试,这反映了NSF的法定任务和依据的依据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Corey O'Hern其他文献
Understanding the Native Fluctuation of Protein Cores
- DOI:
10.1016/j.bpj.2019.11.307 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Zhe Mei;John Treado;Lynne J. Regan;Zachary Levine;Corey O'Hern - 通讯作者:
Corey O'Hern
The Free Energy Reaction Path Theory of Reliable Protein Folding
- DOI:
10.1016/j.bpj.2008.12.3088 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Gregg Lois;Jerzy Blawzdziewicz;Corey O'Hern - 通讯作者:
Corey O'Hern
Corey O'Hern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Corey O'Hern', 18)}}的其他基金
NSF REU Site: Research training in the biomedical sciences and engineering
NSF REU 网站:生物医学科学与工程研究培训
- 批准号:
2050777 - 财政年份:2021
- 资助金额:
$ 77.2万 - 项目类别:
Continuing Grant
Biological Self Assembly: Tissue Mechanics of the Spongy Mesophyll in Flowers
生物自组装:花中海绵状叶肉的组织力学
- 批准号:
2029756 - 财政年份:2020
- 资助金额:
$ 77.2万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and Computational Studies of Flow and Clogging of Deformable Particles under Confinement
合作研究:约束下可变形颗粒流动和堵塞的实验和计算研究
- 批准号:
2002782 - 财政年份:2020
- 资助金额:
$ 77.2万 - 项目类别:
Standard Grant
4th International Conference on Packing Problems
第四届国际包装问题会议
- 批准号:
1926690 - 财政年份:2019
- 资助金额:
$ 77.2万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Research Training Across Biology, Physics, and Engineering
REU 网站:跨生物学、物理学和工程学的跨学科研究培训
- 批准号:
1755494 - 财政年份:2018
- 资助金额:
$ 77.2万 - 项目类别:
Standard Grant
16th Annual Northeastern Granular Materials Workshop; New Haven, Connecticut; June 8, 2018
第十六届东北颗粒材料研讨会;
- 批准号:
1834732 - 财政年份:2018
- 资助金额:
$ 77.2万 - 项目类别:
Standard Grant
The Origin of Geometric Friction and Cohesion
几何摩擦力和内聚力的起源
- 批准号:
1605178 - 财政年份:2016
- 资助金额:
$ 77.2万 - 项目类别:
Standard Grant
REU Site: Convergence of Research at the Interface of the Biological, Physical, and Engineering Sciences
REU 网站:生物、物理和工程科学交叉领域的研究融合
- 批准号:
1458609 - 财政年份:2015
- 资助金额:
$ 77.2万 - 项目类别:
Standard Grant
SYMPOSIUM: Support for U.S. Participants for the Symposium on "Statics and Dynamics of Dense Granular Matter," July 6 - 10, 2015, Madrid, Spain
研讨会:支持美国参与者参加“致密颗粒物质的静态和动力学”研讨会,2015 年 7 月 6 日至 10 日,西班牙马德里
- 批准号:
1460426 - 财政年份:2015
- 资助金额:
$ 77.2万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Granular Acoustic Meta-materials with Engineered Particles and Packings
合作研究:带有工程颗粒和填料的粒状声学超材料的力学
- 批准号:
1462439 - 财政年份:2015
- 资助金额:
$ 77.2万 - 项目类别:
Standard Grant
相似国自然基金
基于机械振动的莫尔超晶格结构动态调控机制研究
- 批准号:12372092
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
复杂机械结构体密集紧固件装配质量的生成式多模态数据融合检测机理与方法
- 批准号:52375494
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于深度学习的三维物体智能化抓取策略及机械手自动化结构设计研究
- 批准号:62302517
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
机械互锁聚合物的结构、动力学与流变行为研究
- 批准号:52333001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
面向桥梁下部结构接触巡检的旋翼飞行机械臂交互控制
- 批准号:62373098
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Dysregulated mechanosignaling in dilated cardiomyopathy caused by defective Filamin C
Filamin C 缺陷引起的扩张型心肌病的机械信号失调
- 批准号:
10877387 - 财政年份:2023
- 资助金额:
$ 77.2万 - 项目类别:
Improving bone mass and quality in comorbid diabetes and chronic kidney disease
改善糖尿病和慢性肾病共病患者的骨量和骨质量
- 批准号:
10590035 - 财政年份:2023
- 资助金额:
$ 77.2万 - 项目类别:
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
- 批准号:
10644281 - 财政年份:2023
- 资助金额:
$ 77.2万 - 项目类别:
The impact of the dermal ECM microenvironment on cutaneous aging and cancer
真皮ECM微环境对皮肤衰老和癌症的影响
- 批准号:
10637690 - 财政年份:2023
- 资助金额:
$ 77.2万 - 项目类别:
Revealing the Cell Wall Organization of Fungal Pathogens and Structural Responses to Antifungal Drugs Using Cellular Solid-State NMR
使用细胞固态核磁共振揭示真菌病原体的细胞壁组织和抗真菌药物的结构反应
- 批准号:
10566511 - 财政年份:2023
- 资助金额:
$ 77.2万 - 项目类别: