Collaborative Research: Mechanics of Granular Acoustic Meta-materials with Engineered Particles and Packings
合作研究:带有工程颗粒和填料的粒状声学超材料的力学
基本信息
- 批准号:1462439
- 负责人:
- 金额:$ 25.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-15 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Acoustic meta-materials are engineered materials enabling the control of sound waves. Granular acoustic meta-materials are constructs of particles in periodic and disordered arrangements. This project seeks a fundamental understanding of the acoustic and mechanical response of granular packings where the particles possess specific engineered properties. These materials exhibit a key acoustical property, that is acoustic band gaps. Band gaps prevent sound of certain frequencies to propagate. Meta-materials exhibiting acoustic band gaps have applications for vibration isolation, sound wave communication, acoustic super-lenses, acoustic diodes, and acoustic cloaking devices. This project will combine engineered particle shapes and materials with specially designed spatial arrangements of the particles to allow detailed control over the acoustic properties of the material. This project will involve several undergraduates in research each year through partnerships between the collaborating institutions, one of which is minority-serving. Outreach initiatives include an annual lecture series on granular media. Teaching modules for use by the International Centre for Theoretical Physics will be developed for teaching basic computational research skills to graduate students from developing countries. In granular media, the discrete nature of the material allows optimization on both the grain and network scales. Also, the speed of sound in granular materials depends on the confining pressure due to changes in the particle-particle contact area. The objective of this research is to gain understanding of the acoustic response of engineered granular meta-materials, and to exploit their unique features to tune the mechanical response. Variations of the confining pressure will be employed to actively control the acoustic properties of granular meta-materials. Novel direct visualization techniques and discrete element simulations of individual particle motions and forces will enable close feedback between the predicted and measured mechanical response. The team will use 3D printing and other fabrication techniques to engineer particles with varied elastic properties, surface treatments, and complex shapes. In both experiments and simulations, the team will construct disordered and crystalline granular packings in both two- and three-dimensions using direct assembly methods. The team will also explore the effects of boundary conditions on the internal stress networks of granular packings with the goal of tuning their acoustic properties. Realistic inter-particle force laws obtained from direct measurements will be implemented into discrete element simulations of the mechanical response and compared to the results from experiments. Attainment of these goals will provide unprecedented insight into the acoustic properties of granular meta-materials.
声学超材料是能够控制声波的工程材料。 粒状声学超材料是由周期性和无序排列的粒子构成的。 该项目寻求对颗粒填料的声学和机械响应的基本了解,其中颗粒具有特定的工程特性。 这些材料表现出一个关键的声学特性,即声学带隙。带隙阻止某些频率的声音传播。 具有声学带隙的超常材料可用于振动隔离、声波通信、声学超级透镜、声学二极管和声学隐形装置。 该项目将工程颗粒形状和材料与专门设计的颗粒空间排列相结合,以便对材料的声学特性进行详细控制。该项目每年将通过合作机构之间的合作关系让几名本科生参与研究,其中之一是为少数族裔服务的机构。外展活动包括关于颗粒媒体的年度系列讲座。将开发供国际理论物理中心使用的教学模块,用于向发展中国家的研究生教授基本的计算研究技能。在颗粒介质中,材料的离散性质允许在颗粒和网络尺度上进行优化。此外,颗粒材料中的声速取决于颗粒与颗粒接触面积变化引起的围压。这项研究的目的是了解工程颗粒超材料的声学响应,并利用其独特的功能来调整机械响应。 围压的变化将用于主动控制粒状超材料的声学特性。新颖的直接可视化技术和单个粒子运动和力的离散元模拟将实现预测和测量的机械响应之间的密切反馈。 该团队将使用 3D 打印和其他制造技术来设计具有不同弹性特性、表面处理和复杂形状的颗粒。在实验和模拟中,该团队将使用直接组装方法在二维和三维空间构建无序和结晶颗粒填料。该团队还将探索边界条件对颗粒填料内应力网络的影响,以调整其声学特性。 从直接测量获得的真实粒子间力定律将被应用到机械响应的离散元模拟中,并与实验结果进行比较。 这些目标的实现将为颗粒超材料的声学特性提供前所未有的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Corey O'Hern其他文献
Corey O'Hern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Corey O'Hern', 18)}}的其他基金
Modeling the Structural and Mechanical Properties of Tissue During Zebrafish Tailbud Elongation
模拟斑马鱼尾芽伸长过程中组织的结构和力学特性
- 批准号:
2102789 - 财政年份:2021
- 资助金额:
$ 25.32万 - 项目类别:
Continuing Grant
NSF REU Site: Research training in the biomedical sciences and engineering
NSF REU 网站:生物医学科学与工程研究培训
- 批准号:
2050777 - 财政年份:2021
- 资助金额:
$ 25.32万 - 项目类别:
Continuing Grant
Biological Self Assembly: Tissue Mechanics of the Spongy Mesophyll in Flowers
生物自组装:花中海绵状叶肉的组织力学
- 批准号:
2029756 - 财政年份:2020
- 资助金额:
$ 25.32万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental and Computational Studies of Flow and Clogging of Deformable Particles under Confinement
合作研究:约束下可变形颗粒流动和堵塞的实验和计算研究
- 批准号:
2002782 - 财政年份:2020
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
4th International Conference on Packing Problems
第四届国际包装问题会议
- 批准号:
1926690 - 财政年份:2019
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Research Training Across Biology, Physics, and Engineering
REU 网站:跨生物学、物理学和工程学的跨学科研究培训
- 批准号:
1755494 - 财政年份:2018
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
16th Annual Northeastern Granular Materials Workshop; New Haven, Connecticut; June 8, 2018
第十六届东北颗粒材料研讨会;
- 批准号:
1834732 - 财政年份:2018
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
The Origin of Geometric Friction and Cohesion
几何摩擦力和内聚力的起源
- 批准号:
1605178 - 财政年份:2016
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
REU Site: Convergence of Research at the Interface of the Biological, Physical, and Engineering Sciences
REU 网站:生物、物理和工程科学交叉领域的研究融合
- 批准号:
1458609 - 财政年份:2015
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
SYMPOSIUM: Support for U.S. Participants for the Symposium on "Statics and Dynamics of Dense Granular Matter," July 6 - 10, 2015, Madrid, Spain
研讨会:支持美国参与者参加“致密颗粒物质的静态和动力学”研讨会,2015 年 7 月 6 日至 10 日,西班牙马德里
- 批准号:
1460426 - 财政年份:2015
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
相似国自然基金
多冗余度机器人的跨层协作神经动力学优化策略研究
- 批准号:62373157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
- 批准号:52202452
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多机械臂协作系统动力学层级解析建模与协调柔顺控制理论及实验研究
- 批准号:52175083
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
面向信息生态复杂性的群体博弈与协作动力学研究
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
直立抗扰任务下的踝关节外骨骼协作控制策略研究
- 批准号:61903286
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:
2323415 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 25.32万 - 项目类别:
Standard Grant