CAREER: DYNAMIC LIVING HYDROGEL NETWORKS FOR SPATIO-TEMPORAL CONTROL OF CELL SIGNALING
职业:用于细胞信号传导时空控制的动态活水凝胶网络
基本信息
- 批准号:2034202
- 负责人:
- 金额:$ 23.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical AbstractBiomaterials-based three-dimensional hydrogels that better reflect the extracellular microenvironment of native tissues are important for tissue repair and regeneration as well as cell-matrix interaction studies. Importantly, the biochemical signals between cell and surrounding matrix are dynamic over multiple time (seconds-weeks) and length (nm-cm) scales, and are dependent on tissue stiffness. Therefore, materials engineered to modulate cell response must be similarly dynamic in their spatio-temporal presentation of bio-ligands and material stiffness. Although hydrogels that control spatial and temporal presentation of bio-ligands by use of external triggers have been realized, these hydrogels have not yet provided 3 key properties: a) spatial control of cell signaling, b) simultaneous temporal presentation of bio-adhesivity, and c) independent control of bio-adhesivity and material stiffness to parse individual contributions to cell modulation. This NSF CAREER award, funded by the Biomaterials program in the Division of Materials Research, will enable development of a new class of nanocomposite hydrogels with control over the above mentioned three key properties within a single hydrogel. This work will advance current understanding of the role of biomaterial properties in controlling human stem cell fate through user-directed spatio-temporal control of cell-matrix interactions. This work will make interactive inquiry based learning permeate the underprivileged middle and high schools by training teachers and students. This CAREER award will grow the infrastructure of US engineers, in particular those from underrepresented minorities, with strong disciplinary competence in biomaterials through pedagogy and cutting-edge research.Non-Technical AbstractBiomaterials-based 3D hydrogels that better reflect the niche of native tissues and capture critical aspects of the dynamic microenvironment are of increasing importance for culturing of mammalian cells, including stem cells, for a wide range of applications in biomedicine. The flow of information between cells and their surrounding niche is spatially and temporally dependent on biochemical signals and cell-cell interactions. Despite advancement in the field of biomaterials, independent role of spatio-temporal biochemical signaling and biophysical properties of materials cannot be effectively studied using a single hydrogel system. This NSF CAREER award will overcome the current bottlenecks in biomaterials research by enabling the development of a new class of hydrogel that dynamically communicates with cells to control their fates. The proposed research will benefit society by developing advanced bio-functional tissues for regenerative medicine. In particular we expect this work to generate dynamic biomaterials for better understanding of stem cells and their interactions with local surroundings that will help treatment of neurological disorders and enable regeneration of neural grafts for short and long nerve gaps. The outcomes of this research will catalyze potential avenues of investigation in multiple disciplines, including cell culture, tissue fabrication, blood vessel generation, drug delivery, tumor engineering, and implants. This work will make interactive inquiry based learning permeate the underprivileged middle and high schools by training teachers and students. This CAREER proposal will grow the infrastructure of US engineers, in particular undergraduate and graduate students including those from underrepresented minorities, with strong disciplinary competence in biomaterials through pedagogy and cutting-edge research.
技术摘要基于生物材料的三维水凝胶可以更好地反映天然组织的细胞外微环境,对于组织修复和再生以及细胞-基质相互作用研究具有重要意义。重要的是,细胞和周围基质之间的生化信号在多个时间(秒-周)和长度(纳米-厘米)范围内是动态的,并且取决于组织硬度。因此,设计用于调节细胞反应的材料在生物配体和材料刚度的时空呈现方面必须具有类似的动态性。尽管通过使用外部触发来控制生物配体的空间和时间呈现的水凝胶已经实现,但这些水凝胶尚未提供3个关键特性:a)细胞信号传导的空间控制,b)生物粘附性的同时时间呈现,和c) 独立控制生物粘附性和材料刚度,以解析个体对细胞调节的贡献。该 NSF 职业奖由材料研究部生物材料项目资助,将有助于开发新型纳米复合水凝胶,并在单个水凝胶中控制上述三个关键特性。这项工作将通过用户指导的细胞-基质相互作用的时空控制,促进目前对生物材料特性在控制人类干细胞命运中的作用的理解。这项工作将通过培训教师和学生,使基于互动探究的学习渗透到贫困初高中。该职业奖将发展美国工程师的基础设施,特别是那些来自代表性不足的少数族裔的工程师,通过教育学和前沿研究在生物材料方面拥有强大的学科能力。非技术摘要基于生物材料的 3D 水凝胶可以更好地反映天然组织的利基并捕获动态微环境的关键方面对于哺乳动物细胞(包括干细胞)的培养越来越重要,以实现生物医学的广泛应用。细胞与其周围生态位之间的信息流在空间和时间上取决于生化信号和细胞间相互作用。尽管生物材料领域取得了进步,但使用单一水凝胶系统无法有效地研究材料的时空生化信号和生物物理性质的独立作用。该 NSF 职业奖将通过开发新型水凝胶来克服当前生物材料研究的瓶颈,该水凝胶可与细胞动态通信以控制其命运。拟议的研究将通过开发用于再生医学的先进生物功能组织来造福社会。我们特别希望这项工作能够产生动态生物材料,以更好地了解干细胞及其与局部环境的相互作用,这将有助于治疗神经系统疾病,并使短神经间隙和长神经间隙的神经移植物再生。这项研究的成果将促进多个学科的潜在研究途径,包括细胞培养、组织制造、血管生成、药物输送、肿瘤工程和植入物。这项工作将通过培训教师和学生,使基于互动探究的学习渗透到贫困初高中。该职业提案将增强美国工程师的基础设施,特别是本科生和研究生,包括来自代表性不足的少数族裔的学生,通过教学和前沿研究在生物材料方面拥有强大的学科能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ankur Singh其他文献
Socioeconomic Inequalities in Clustering of Health-Compromising Behaviours among Indian Adolescents
印度青少年危害健康行为集中的社会经济不平等
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0.9
- 作者:
M. Mathur;Ankur Singh;V. Mishra;Priyanka Parmar;D. Nagrath;R. Watt;G. Tsakos - 通讯作者:
G. Tsakos
Association of Methylene Tetrahydrofolate Reductase Polymorphism with BMD and Homocysteine in Premenopausal North Indian Women.
北印度绝经前妇女亚甲基四氢叶酸还原酶多态性与 BMD 和同型半胱氨酸的关联。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Sanjeev Pandey;Ankur Singh;S. Polipalli;Sangeeta Gupta;S. Kapoor - 通讯作者:
S. Kapoor
Novel Mutation and White Matter Involvement in an Indian Child with Pycnodysostosis
患有致密性骨质疏松症的印度儿童的新突变和白质参与
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:4.3
- 作者:
Ankur Singh;S. Cuevas;G. Pradhan;V. Gautam;Olga M. Messina;L. González;Manisha Goyal;S. Kapoor - 通讯作者:
S. Kapoor
How are the built environment and household travel characteristics associated with children's active transport in Melbourne, Australia?
澳大利亚墨尔本的建筑环境和家庭出行特征与儿童主动交通的关系如何?
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Alison Carver;A. Barr;Ankur Singh;H. Badland;S. Mavoa;R. Bentley - 通讯作者:
R. Bentley
Associations between Public Transport Accessibility around Homes and Schools and Walking and Cycling among Adolescents
家庭和学校周围公共交通的可达性与青少年步行和骑自行车之间的关联
- DOI:
10.3390/children7040030 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:0
- 作者:
Syafiqah Hannah Binte Zulkefli;A. Barr;Ankur Singh;Alison Carver;S. Mavoa;J. Scheurer;H. Badland;R. Bentley - 通讯作者:
R. Bentley
Ankur Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ankur Singh', 18)}}的其他基金
CAREER: DYNAMIC LIVING HYDROGEL NETWORKS FOR SPATIO-TEMPORAL CONTROL OF CELL SIGNALING
职业:用于细胞信号传导时空控制的动态活水凝胶网络
- 批准号:
1554275 - 财政年份:2016
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
相似国自然基金
基于显微时序成像构建活细胞行为学表征系统,探究黄芪甲苷抑制肌成纤维细胞表型转化的动态机制
- 批准号:82305051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活细胞内动力蛋白结合并转运内吞体的动态过程及dynactin在其中的作用
- 批准号:32360163
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
活细胞超分辨显微成像技术研究寨卡病毒复制细胞器的动态形成机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
干细胞非对称分裂后,关键基因转录动态模式及其对细胞命运决定作用的活细胞研究
- 批准号:32170800
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
用于活细胞动态观察的高时空分辨定量相位显微系统及其动态分析技术
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic Bone-Implant Loading in Osseointegrated Prostheses
骨整合假体中的动态骨植入负载
- 批准号:
10597791 - 财政年份:2023
- 资助金额:
$ 23.4万 - 项目类别:
CAREER: Dynamic characterization of acoustofluidic devices using living probes
职业:使用活体探针对声流体装置进行动态表征
- 批准号:
1944063 - 财政年份:2020
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant
CAREER: DYNAMIC LIVING HYDROGEL NETWORKS FOR SPATIO-TEMPORAL CONTROL OF CELL SIGNALING
职业:用于细胞信号传导时空控制的动态活水凝胶网络
- 批准号:
1554275 - 财政年份:2016
- 资助金额:
$ 23.4万 - 项目类别:
Continuing Grant