Regularity Questions in Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的正则性问题
基本信息
- 批准号:2055244
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on mathematical research in certain partial differential equations (PDE) that model phenomena in physics, engineering, materials science, and economics. The study of PDE arising in models for composite materials, in particular fiber reinforced materials, is of increasing importance due to industry's need to design for improved performance. The mathematical research of the Monge-Ampére equation and related equations has particularly significant applications in differential geometry and optimal mass transport such as, for example, constructing surfaces with prescribed Gaussian curvature and reflector/refractor design. The principal investigator (PI) will carry out research closely related to these topics and will attempt to address some of the open questions in these areas. He will engage graduate students and postdoctoral researchers in the work of the project.The PI will focus his attention on several questions in three main topical areas. First, he will develop new methods to study elliptic and parabolic equations with mixed boundary conditions and rough coefficients in nonsmooth domains by using tools from harmonic analysis and conformal maps, parabolic equations with nonlocal time derivatives or more generally with nonlocal derivatives in both space and time, and Kolmogorov equations of ultraparabolic (or hypoelliptic) type with measurable coefficients. Second, the PI will study the regularity theory for degenerate fully nonlinear equations, in particular the m-Hessian equation with optimal power, the degenerate quotient Hessian equations, and more general types of Hessian equations with elementary symmetric polynomials. Finally, regarding PDE arising in the study of composite materials, the PI is particularly interested in composites with Lipschitz inclusions, and quasilinear or singular/degenerate equations of this type, and will develop new methods for the analysis of these PDE.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目着重于某些部分偏微分方程(PDE)的数学研究,以模拟物理,工程,材料科学和经济学中的现象。在复合材料模型中引起的PDE的研究,特别是纤维增强材料,由于行业需要设计以提高性能的需求而提高了重要性。 Monge-Ampére方程和相关方程的数学研究在差异几何和最佳质量传输中特别有用,例如,例如使用处方的高斯货币和反射器/折射率设计构建表面。首席研究员(PI)将进行与这些主题密切相关的研究,并试图解决这些领域的一些开放问题。他将与研究生和博士后研究人员一起参与项目的工作。PI将把注意力集中在三个主要主题领域的几个问题上。 First, he will develop new Methods to study elliptic and parabolic equations with mixed boundary conditions and rough coefficients in nonsmooth domains by using tools from harmonic analysis and conformal maps, parabolic equations with nonlocal time derivatives or more generally with nonlocal derivatives in both space and time, and Kolmogorov equations of ultraparabolic (or hypoelliptic) type with measurable coefficients.其次,PI将研究归化完全非线性方程的规则性理论,特别是具有最佳幂的M-Hessian方程,退化引号Hessian方程以及具有基本对称多项式的Hessian方程的更多一般类型。 Finally, regarding PDE arising in the study of composite materials, the PI is particularly interested in compositions with Lipschitz inclusions, and quasilinear or singular/degenerate equations of this type, and will develop new methods for the analysis of these PDE.This award reflects NSF's Statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weighted mixed norm estimates for fractional wave equations with VMO coefficients
- DOI:10.1016/j.jde.2022.07.040
- 发表时间:2021-02
- 期刊:
- 影响因子:2.4
- 作者:Hongjie Dong;Yanze Liu
- 通讯作者:Hongjie Dong;Yanze Liu
Gradient estimates for singular parabolic p-Laplace type equations with measure data
具有测量数据的奇异抛物线 p-拉普拉斯型方程的梯度估计
- DOI:10.1007/s00526-022-02189-5
- 发表时间:2022
- 期刊:
- 影响因子:2.1
- 作者:Dong, Hongjie;Zhu, Hanye
- 通讯作者:Zhu, Hanye
Time Fractional Parabolic Equations with Measurable Coefficients and Embeddings for Fractional Parabolic Sobolev Spaces
具有可测系数的时间分数抛物型方程和分数抛物型Sobolev空间的嵌入
- DOI:10.1093/imrn/rnab229
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Dong, Hongjie;Kim, Doyoon
- 通讯作者:Kim, Doyoon
Optimal Regularity of Mixed Dirichlet-Conormal Boundary Value Problems for Parabolic Operators
抛物算子混合狄利克雷-协正边值问题的最优正则性
- DOI:10.1137/21m1461344
- 发表时间:2022
- 期刊:
- 影响因子:2
- 作者:Choi, Jongkeun;Dong, Hongjie;Li, Zongyuan
- 通讯作者:Li, Zongyuan
Mixed boundary value problems for parabolic equations in Sobolev spaces with mixed-norms
混合范数 Sobolev 空间中抛物线方程的混合边值问题
- DOI:10.1007/s00526-022-02327-z
- 发表时间:2023
- 期刊:
- 影响因子:2.1
- 作者:Choi, Jongkeun;Dong, Hongjie;Li, Zongyuan
- 通讯作者:Li, Zongyuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongjie Dong其他文献
Gradient estimates for the insulated conductivity problem: the non-umbilical case
绝缘电导率问题的梯度估计:非脐带缆案例
- DOI:
10.1016/j.matpur.2024.06.002 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hongjie Dong;YanYan Li;Zhuolun Yang - 通讯作者:
Zhuolun Yang
Conormal derivative problems for stationary Stokes system in Sobolev spaces
Sobolev空间中平稳Stokes系统的共正导数问题
- DOI:
10.3934/dcds.2018097 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jongkeun Choi;Hongjie Dong;Doyoon Kim - 通讯作者:
Doyoon Kim
Weighted $L_q$-estimates for stationary Stokes system with partially BMO coefficients
具有部分 BMO 系数的平稳斯托克斯系统的加权 $L_q$ 估计
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hongjie Dong;Doyoon Kim - 通讯作者:
Doyoon Kim
Fundamental solutions for second-order parabolic systems with drift terms
具有漂移项的二阶抛物线系统的基本解
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Hongjie Dong;Seick Kim - 通讯作者:
Seick Kim
Regularity theory for parabolic equations with singular degenerate coefficients
具有奇异简并系数的抛物型方程的正则理论
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hongjie Dong;T. Phan - 通讯作者:
T. Phan
Hongjie Dong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongjie Dong', 18)}}的其他基金
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Topics in Regularity Theory of Partial Differential Equations
偏微分方程正则论专题
- 批准号:
1600593 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Problems in regularity theory for linear and nonlinear partial differential equations
职业:线性和非线性偏微分方程的正则理论问题
- 批准号:
1056737 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Research topics in partial differential equations
偏微分方程研究课题
- 批准号:
0800129 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
线性周期时滞系统有限时间镇定问题研究及应用
- 批准号:62363003
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
抛物方程控制问题快速线性迭代法的研究
- 批准号:12301480
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
几类非线性椭圆问题在黎曼流形和加权图上的研究
- 批准号:12371206
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非线性耦合问题的各向异性高精度有限元方法新模式研究
- 批准号:12301474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性波方程外区域初边值问题的长时间动力学性质研究
- 批准号:12371239
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
- 批准号:
2154408 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Training in Advanced Statistical Methods in Neuroimaging and Genetics
神经影像和遗传学高级统计方法培训
- 批准号:
10655069 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Training in Advanced Statistical Methods in Neuroimaging and Genetics
神经影像和遗传学高级统计方法培训
- 批准号:
10710064 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
- 批准号:
1956092 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Minimisation questions on semi-linear sets and infinite-state systems
半线性集和无限状态系统的最小化问题
- 批准号:
2436353 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Studentship