Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network

合作研究:PPoSS:规划:硬件加速的可信深度神经网络

基本信息

  • 批准号:
    2028873
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Deep-learning approaches have recently achieved much higher accuracy than traditional machine-learning approaches in various applications (e.g., computer vision, virtual/augmented reality, and natural language processing). Existing research has shown that large-scale data from various sources with high-resolution sensing or large-volume data-collection capabilities can significantly improve the performance of deep-learning approaches. However, state-of-the-art hardware and software cannot provide sufficient computing capabilities and resources to ensure accurate deep-learning performance in a timely manner when using extremely large-scale data. This project develops a scalable and robust heterogeneous system that includes a new low-cost, secure, deep-learning hardware-accelerator architecture and a suite of large-data-compatible deep-learning algorithms. It allows deep learning to fully benefit from extremely large-scale data and facilitates efficient, low-latency applications in connected vehicles, real-time mobile applications, and timely precision health. The new technologies resulting from this project can enable more research opportunities to design new hardware accelerators for deep learning and obtain further optimization in computational complexity and reduction in power consumption. Moreover, by integrating the research results with the undergraduate and graduate curricula and outreach activities, this project has great impacts on education and training of researchers and engineers for computer architecture, security, theory and algorithms, and systems.This project designs trustworthy hardware accelerators optimized for large-scale deep-learning computations and models the complicated structure of large-scale datasets. More specifically, this project develops a novel hardware accelerator for deep learning that can achieve low power consumption. In addition, this project designs innovative in-memory encryption schemes to secure the neural models in deep-learning accelerators. Furthermore, data-modeling and statistical-learning algorithms are developed in this project to further reduce the computing cost of deep learning when processing extremely large-scale datasets. Finally, this project builds and evaluates a prototype of the proposed heterogeneous deep-learning system in terms of efficiency, scalability, and security in multiple application domains including mobile applications, connected vehicles and precision health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近,深度学习方法在各种应用(例如计算机视觉、虚拟/增强现实和自然语言处理)中取得了比传统机器学习方法更高的准确性。现有研究表明,具有高分辨率传感或大容量数据收集能力的各种来源的大规模数据可以显着提高深度学习方法的性能。然而,最先进的硬件和软件无法提供足够的计算能力和资源来保证在使用超大规模数据时及时准确的深度学习性能。该项目开发了一个可扩展且强大的异构系统,其中包括新的低成本、安全的深度学习硬件加速器架构和一套大数据兼容的深度学习算法。它使深度学习能够充分受益于超大规模数据,并促进互联车辆、实时移动应用和及时精准健康方面的高效、低延迟应用。该项目产生的新技术可以为设计新的深度学习硬件加速器提供更多研究机会,并获得计算复杂性和功耗降低的进一步优化。此外,通过将研究成果与本科生和研究生课程以及推广活动相结合,该项目对计算机体系结构、安全、理论与算法以及系统方面的研究人员和工程师的教育和培训产生了巨大影响。该项目设计了值得信赖的优化硬件加速器用于大规模深度学习计算并对大规模数据集的复杂结构进行建模。更具体地说,该项目开发了一种新颖的深度学习硬件加速器,可以实现低功耗。此外,该项目设计了创新的内存加密方案,以保护深度学习加速器中的神经模型。此外,该项目还开发了数据建模和统计学习算法,以进一步降低深度学习在处理超大规模数据集时的计算成本。最后,该项目在移动应用、联网车辆和精准健康等多个应用领域的效率、可扩展性和安全性方面构建并评估了所提出的异构深度学习系统的原型。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WatchID: Wearable Device Authentication via Reprogrammable Vibration
WatchID:通过可重新编程的振动进行可穿戴设备身份验证
mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave
mmFit:使用毫米波轻松进行个性化健身监测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerry Cheng其他文献

Severe lactic acidosis in a 14-year-old female with metastatic undifferentiated carcinoma of unknown primary.
一名 14 岁女性,患有原发灶不明的转移性未分化癌,出现严重乳酸酸中毒。
  • DOI:
    10.1097/00043426-200411000-00021
  • 发表时间:
    2004-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jerry Cheng;Samuel D. Esparza;V. Knez;K. Sakamoto;T. Moore
  • 通讯作者:
    T. Moore
leukemogenesis CREB is a critical regulator of normal hematopoiesis and
白血病发生 CREB ​​是正常造血的重要调节因子
  • DOI:
    10.3390/biomedicines9070726
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    M. Sakamoto;D. Shankar;N. Kasahara;R. Stripecke;R. Bhatia;E. Landaw;Jerry Cheng;K. Kinjo;Dejah R. Judelson;Jenny Chang;Winston S. Wu;I. Schmid
  • 通讯作者:
    I. Schmid
Transcriptional Regulators and Myelopoiesis: The Role of Serum Response Factor and CREB as Targets of Cytokine Signaling
转录调节因子和骨髓生成:血清反应因子和 CREB ​​作为细胞因子信号转导靶标的作用
  • DOI:
    10.1634/stemcells.21-2-123
  • 发表时间:
    2003-03-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    P. Mora;Jerry Cheng;Heather N Crans;A. Countouriotis;D. Shankar;K. Sakamoto
  • 通讯作者:
    K. Sakamoto
Cimetidine Attenuates Therapeutic Effect of Anti-PD-1 and Anti-PD-L1 and Modulates Tumor Microenvironment in Colon Cancer
西咪替丁减弱抗 PD-1 和抗 PD-L1 的治疗效果并调节结肠癌的肿瘤微环境
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Feng;Jerry Cheng;H. Shieh;Wan;Ming;Yu
  • 通讯作者:
    Yu
Influence of hemoglobin on blood pressure among people with GP.Mur blood type☆.
血红蛋白对 GP.Mur 血型人群血压的影响。

Jerry Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerry Cheng', 18)}}的其他基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120350
  • 财政年份:
    2021
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1954959
  • 财政年份:
    2019
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1933017
  • 财政年份:
    2019
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1514224
  • 财政年份:
    2015
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Towards Understanding Smartphone User Privacy: Implication, Derivation, and Protection
EAGER:协作研究:理解智能手机用户隐私:含义、推导和保护
  • 批准号:
    1449958
  • 财政年份:
    2014
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316157
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316233
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了