Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
基本信息
- 批准号:2311598
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many advanced edge computing applications rely on large-scale data analysis for high-level decision making. Edge computing makes computing faster and more efficient because it takes place near the physical location of either the user or the data rather than sending all the information to the cloud. For example, augmented reality/virtual reality (AR/VR) applications utilize data from high-definition sensors (e.g., cameras, motion sensors, and microphones) to enable accurate and robust human-computer interactions. Drones and electric vehicles perform tracking, adjustments and obstacle recognition and avoidance via analyzing data at the level of the vehicle. However, the current ability to understand and manage various high-dimensional sensing data is obscured by significant knowledge and data gaps due to the heterogeneous edge device and environments, hindering the building of precise models for emerging edge computing applications using data analytics. One important trend in edge computing is utilizing artificial intelligence (AI) to extract complex knowledge from various sensor measurements for precise modeling. However, most edge devices have limited computing and memory resources, making it challenging to perform sophisticated data analytics using AI while satisfying the time requirements of most applications. Therefore, a heuristic data analytic framework is needed to enable efficient and robust edge event prediction using multi-model learning on resource-constrained edge devices. The goal of this project is developing transformative machine learning and data analytics technologies for enabling AI-based applications on resource-constrained edge computing devices (e.g., IoT devices, AR/VR headsets, and drones). The outcome of this project will advance data analytics and machine learning research of deriving and integrating various high-dimensional sensing data from diverse data sources and building robust predictive models for generic edge computing applications. This project addresses two major problems: 1) the gap between the data complexity and limited computing resources on edge devices and 2) the gap between the robust performance requirement and the multi-dimensional data and complex data modeling from heterogeneous edge devices and environments. The project develops an efficient and robust edge computing framework to provide correctness guarantees on heterogeneous edge computing hardware across different environments. In particular, deep neural network acceleration techniques are designed to enable fine-grained data analytics on resource-constrained commercial-off-the-shelf edge devices. Novel multivariate data analytic models are developed to characterize the unique features of the target event based on high-dimensional sensing data. Such models advance the usage of data science in generic edge sensing tasks that usually suffer from long training times, low prediction accuracy, and ineffective parameter selection. Additionally, the project addresses the challenges arising from the heterogeneity in devices and environments by developing environment-transferable features and models, which enable easy deployment of AI-enabled applications across devices and environments. The project seeks to integrate computer science research with graduate and undergraduate curricula and promote female engineering student involvement. The outcomes will be shared through conferences, journals, and website accessibility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多先进的边缘计算应用程序依赖大规模数据分析来进行高级决策。边缘计算使计算更快、更高效,因为它发生在用户或数据的物理位置附近,而不是将所有信息发送到云端。 例如,增强现实/虚拟现实 (AR/VR) 应用程序利用来自高清传感器(例如摄像头、运动传感器和麦克风)的数据来实现准确且稳健的人机交互。无人机和电动汽车通过分析车辆层面的数据来执行跟踪、调整以及障碍物识别和规避。然而,由于异构边缘设备和环境,目前理解和管理各种高维传感数据的能力被巨大的知识和数据差距所掩盖,阻碍了使用数据分析为新兴边缘计算应用程序构建精确模型。边缘计算的一个重要趋势是利用人工智能 (AI) 从各种传感器测量中提取复杂的知识以进行精确建模。然而,大多数边缘设备的计算和内存资源有限,这使得使用人工智能执行复杂的数据分析同时满足大多数应用程序的时间要求具有挑战性。因此,需要一个启发式数据分析框架,以便在资源受限的边缘设备上使用多模型学习来实现高效、鲁棒的边缘事件预测。该项目的目标是开发变革性的机器学习和数据分析技术,以便在资源有限的边缘计算设备(例如物联网设备、AR/VR 耳机和无人机)上启用基于 AI 的应用程序。该项目的成果将推进数据分析和机器学习研究,从不同的数据源导出和集成各种高维传感数据,并为通用边缘计算应用构建强大的预测模型。该项目解决了两个主要问题:1)边缘设备上的数据复杂性和有限的计算资源之间的差距;2)稳健的性能要求与来自异构边缘设备和环境的多维数据和复杂数据建模之间的差距。该项目开发了一个高效、鲁棒的边缘计算框架,为不同环境下的异构边缘计算硬件提供正确性保证。特别是,深度神经网络加速技术旨在在资源有限的商用现成边缘设备上实现细粒度的数据分析。开发了新颖的多元数据分析模型,以基于高维传感数据来表征目标事件的独特特征。此类模型促进了数据科学在通用边缘传感任务中的使用,这些任务通常面临训练时间长、预测精度低和参数选择无效的问题。此外,该项目通过开发环境可迁移的功能和模型来解决设备和环境异构性带来的挑战,从而能够跨设备和环境轻松部署支持人工智能的应用程序。该项目旨在将计算机科学研究与研究生和本科生课程相结合,并促进女工科学生的参与。结果将通过会议、期刊和网站可访问性来分享。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerry Cheng其他文献
Severe lactic acidosis in a 14-year-old female with metastatic undifferentiated carcinoma of unknown primary.
一名 14 岁女性,患有原发灶不明的转移性未分化癌,出现严重乳酸酸中毒。
- DOI:
10.1097/00043426-200411000-00021 - 发表时间:
2004-11-01 - 期刊:
- 影响因子:0
- 作者:
Jerry Cheng;Samuel D. Esparza;V. Knez;K. Sakamoto;T. Moore - 通讯作者:
T. Moore
leukemogenesis CREB is a critical regulator of normal hematopoiesis and
白血病发生 CREB 是正常造血的重要调节因子
- DOI:
10.3390/biomedicines9070726 - 发表时间:
2008 - 期刊:
- 影响因子:4.7
- 作者:
M. Sakamoto;D. Shankar;N. Kasahara;R. Stripecke;R. Bhatia;E. Landaw;Jerry Cheng;K. Kinjo;Dejah R. Judelson;Jenny Chang;Winston S. Wu;I. Schmid - 通讯作者:
I. Schmid
Transcriptional Regulators and Myelopoiesis: The Role of Serum Response Factor and CREB as Targets of Cytokine Signaling
转录调节因子和骨髓生成:血清反应因子和 CREB 作为细胞因子信号转导靶标的作用
- DOI:
10.1634/stemcells.21-2-123 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:5.2
- 作者:
P. Mora;Jerry Cheng;Heather N Crans;A. Countouriotis;D. Shankar;K. Sakamoto - 通讯作者:
K. Sakamoto
Cimetidine Attenuates Therapeutic Effect of Anti-PD-1 and Anti-PD-L1 and Modulates Tumor Microenvironment in Colon Cancer
西咪替丁减弱抗 PD-1 和抗 PD-L1 的治疗效果并调节结肠癌的肿瘤微环境
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.7
- 作者:
Feng;Jerry Cheng;H. Shieh;Wan;Ming;Yu - 通讯作者:
Yu
Influence of hemoglobin on blood pressure among people with GP.Mur blood type☆.
血红蛋白对 GP.Mur 血型人群血压的影响。
- DOI:
10.1016/j.jfma.2021.12.014 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:0
- 作者:
Yung;Kuang;Jerry Cheng;Li;Mei‐Shin Kuo;Chiu‐Chu Liao;Kate Hsu - 通讯作者:
Kate Hsu
Jerry Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerry Cheng', 18)}}的其他基金
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
- 批准号:
2120350 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
- 批准号:
2028873 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1954959 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1933017 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1514224 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Towards Understanding Smartphone User Privacy: Implication, Derivation, and Protection
EAGER:协作研究:理解智能手机用户隐私:含义、推导和保护
- 批准号:
1449958 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似国自然基金
酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
- 批准号:82360199
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
三维内转进气道唇口弯曲激波复杂干扰机理研究
- 批准号:12302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
芯片级原子钟用高效率双功能准三维亚波长结构器件研究
- 批准号:62305252
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂环境下的水下三维路径规划方法研究
- 批准号:62371405
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
P-S-Se三元共价框架结构设计及在锂硫电池中的无穿梭效应储锂机理研究
- 批准号:22379114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant