CAREER: Learning to Sense: Joint Learning of Task Oriented Cognitive Sensing with Data Driven Reconstruction and Inference
职业:学习感知:面向任务的认知感知与数据驱动的重建和推理的联合学习
基本信息
- 批准号:2047771
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Sensors are an indispensable part of our lives, assisting society’s transportation, health, safety, and communication needs. Conventional sensing approaches acquire data in a fixed fashion, independent of the task for which the data is being utilized. In addition, each of data acquisition, reconstruction and inference blocks in the data processing pipeline is independent of one another and optimized separately. This approach has led to exponential rates of data generation that creates an unbearable demand for power, storage, processing, and communication requirements in today’s sensing systems. The goal of this project is to advance the science of learning-based sensing and processing technologies by developing an adaptive, task-oriented and physics-aware data-to-decision pipeline, which jointly optimizes data acquisition, reconstruction, and inference stages in a data-driven learning framework. The proposed research will establish the foundations of future smart, adaptive, and resource-efficient sensing systems for a variety of applications, including biomedical imaging, remote sensing, radar, and wireless communications.This project has three interconnected objectives (i) Developing learning-based physics-aware multi-dimensional signal reconstruction techniques through foundational relations to regularized inverse problems and explainable architectures inspired from existing signal processing models, (ii) Developing mathematical and learning-based adaptive and task-oriented measurement design approaches with jointly optimized sensing, reconstruction and processing blocks, and demonstrate its impacts on real-world problems, (iii) Developing a learning-based data-to-decision framework, which infers actionable information (classification, parameter estimation) directly from low number of learned measurements. The central theme of planned synergistic educational and outreach activities is to increase the scientific literacy of both the K-12 and university students and the public regarding sensing systems, signal processing, and machine learning. Because sensing technologies are on the frontier of how information is perceived and extracted, and are essential to a wide range of applications, this project will have a high impact on sensing technologies being developed to improve the quality of our daily lives, ranging from applications of cameras to biomedical imaging, or from smart home technologies to autonomous vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感器是我们生活中不可或缺的一部分,可满足社会的交通、健康、安全和通信需求。此外,传统的传感方法以固定的方式获取数据,而与数据的用途无关。数据处理管道中的重建和推理块彼此独立并分别进行优化,这种方法导致数据生成速度呈指数级增长,这对当今的传感系统目标的功率、存储、处理和通信要求产生了难以承受的需求。这个的该项目旨在通过开发自适应、面向任务和物理感知的数据到决策管道来推进基于学习的传感和处理技术的科学,该管道联合优化数据驱动学习中的数据采集、重建和推理阶段拟议的研究将为未来智能、自适应和资源节约型传感系统的各种应用奠定基础,包括生物医学成像、遥感、雷达和无线通信。该项目具有三个相互关联的目标(i)发展学习-基于物理感知通过与正则化反问题的基本关系和受现有信号处理模型启发的可解释架构来实现多维信号重建技术,(ii) 开发数学和基于学习的自适应和面向任务的测量设计方法,并联合优化传感、重建和处理模块,并展示其对现实世界问题的影响,(iii)开发基于学习的数据决策框架,该框架直接从少量学习测量中推断出可操作的信息(分类、参数估计)计划协同教育的中心主题。外展活动旨在提高 K-12 学生和大学生以及公众在传感系统、信号处理和机器学习方面的科学素养,因为传感技术处于信息感知和提取的前沿,并且至关重要。该项目将在广泛的应用中对正在开发的传感技术产生重大影响,以提高我们的日常生活质量,从相机应用到生物医学成像,或者从智能家居技术到自动驾驶汽车。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data Driven Learning of Constrained Measurement Matrices for Signal Reconstruction
用于信号重建的约束测量矩阵的数据驱动学习
- DOI:10.1109/ieeeconf53345.2021.9723098
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mdrafi, Robiulhossain;Gurbuz, Ali Cafer
- 通讯作者:Gurbuz, Ali Cafer
Radar-Lidar Fusion for Classification of Traffic Signaling Motion in Automotive Applications
雷达-激光雷达融合用于汽车应用中交通信号运动分类
- DOI:10.1109/radar54928.2023.10371020
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Biswas, Sabyasachi;Ball, John E.;Gurbuz, Ali C.
- 通讯作者:Gurbuz, Ali C.
Quasi-Global Assessment of Deep Learning-Based CYGNSS Soil Moisture Retrieval
- DOI:10.1109/jstars.2023.3287591
- 发表时间:2023
- 期刊:
- 影响因子:5.5
- 作者:Moin Nabi;V. Senyurek;Fangni Lei;M. Kurum;A. Gurbuz
- 通讯作者:Moin Nabi;V. Senyurek;Fangni Lei;M. Kurum;A. Gurbuz
A Deep Learning-Based Soil Moisture Estimation in Conus Region Using Cygnss Delay Doppler Maps
使用 Cygnss 延迟多普勒图进行基于深度学习的圆锥区域土壤湿度估计
- DOI:10.1109/igarss46834.2022.9883916
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Nabi, M M;Senyurek, Volkan;Gurbuz, Ali Cafer;Kurum, Mehmet
- 通讯作者:Kurum, Mehmet
SMAP Radiometer RFI Prediction with Deep Learning using Antenna Counts
SMAP 辐射计 RFI 使用天线计数进行深度学习预测
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Alam, A. M.;Gurbuz, A. C.;Kurum, M.
- 通讯作者:Kurum, M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Gurbuz其他文献
Ali Gurbuz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Gurbuz', 18)}}的其他基金
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Small: Collaborative Research: RF Sensing for Sign Language Driven Smart Environments
CPS:小型:协作研究:手语驱动智能环境的射频传感
- 批准号:
1931861 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于沉浸式虚拟现实环境的感觉-运动交互对外语词汇学习的影响及其脑机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
感知运动学习中反馈信息的认知机制研究
- 批准号:31871102
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
跨感觉通道类别学习的认知神经机制
- 批准号:31700975
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
场景的多模态信息整合在情感学习记忆中的神经机理
- 批准号:91732106
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:重大研究计划
人类内在空间参照系对角度知觉的影响
- 批准号:31771209
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
2022 Craniofacial Morphogenesis and Tissue Regeneration Gordon Research Conference and Gordon Research Seminar
2022颅面形态发生与组织再生戈登研究会议暨戈登研究研讨会
- 批准号:
10388749 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Chemical mapping of protein networks that sense cellular force
感知细胞力的蛋白质网络的化学图谱
- 批准号:
10385719 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
The representation and modulation of sensory information in the learning and memory center of the Drosophila brain
果蝇大脑学习记忆中心感觉信息的表示和调制
- 批准号:
10436182 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
The representation and modulation of sensory information in the learning and memory center of the Drosophila brain
果蝇大脑学习记忆中心感觉信息的表示和调制
- 批准号:
10314793 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
The representation and modulation of sensory information in the learning and memory center of the Drosophila brain
果蝇大脑学习记忆中心感觉信息的表示和调制
- 批准号:
10645081 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别: