Collaborative Research: Novel Modular High-density High-efficiency medium voltage power converter

合作研究:新型模块化高密度高效中压电源转换器

基本信息

项目摘要

Novel Modular High-density High-efficiency Medium-voltage Power ConverterHigh power solid-state power converter is a critical component in many applications, such as accessing renewables energy and energy storages from grid, e.g. solar, wind, and batteries and driving high power motors. Traditionally, most of such power converter are rated below 1 kilovolt or within lower voltage class for its simplicity. Recently, for further system cost reduction and efficiency improvement, industry is moving toward medium-voltage solutions, which can directly access the medium voltage grid, to save bulky transformer, cables and cost of the converter. To achieve such goal, it is desirable to develop a medium voltage high-power solid-state power converter, which is high-efficient, high power density/low volume and with ac output waveform close to an ideal sinusoidal waveform. To address such desire, the principle investigators proposed a novel modular high density medium-voltage power converter topology, namely three-level hybrid modular multilevel converter, which combines branches with cascaded modular cells and traditional three-level structure. The proposed concept leads to various topology variations for medium voltage application. In particular, the rectifier variation with diode as the three level structure can provide a significant cost and total system size saving and efficiency improvement compared to classic modular multilevel converter solution. Compared with the state of art solution, this proposed solution can reduce the converter volume/weight by up to 50% and the improve the converter efficiency by up to 30% while achieve the same voltage and current rating. In addition, thanks to the modular design, the proposed solution can also achieve high-fidelity ac output and can be scaled up to higher voltage rating for future applications without intensive engineering design rework. The low voltage and medium voltage silicon carbide devices can be used in the proposed family of topologies to leverage its switching-loss savings to synthesize high-fidelity ac output. Such modular design also means built-in system redundancy which can substantially improve system reliability. Thus, the intellectual merits of the proposed solution will make a strong impact on a broad range of medium voltage power conversion applications, like renewable energy grid-integration, subsea and offshore dc power delivery, naval medium voltage direct current power system, industrial variable speed drives, and transportation high-speed electric propulsion system. There are many fundamental control challenges and operation analysis for this topology and its variations. Through the proposed program, the detailed topology and operation analysis of the family of proposal converter topology will be performed for both unity power factor and non-unity power factor conditions. The phase-arm and phase energy balancing strategies will be explored and verified in simulation. And its benefits will be analyzed through detailed engineering design for down-selected example systems, including fault handling capability. In the end, scaled prototypes will be developed to demonstrate its innovation and benefit to industry. The unique industry consortium and Navy collaboration provided by the universities will foster a collaborative relationship among industry members, Navy R&D community, and academic researchers, which will consequently make a strong impact through this NSF research program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型模块化高密度高效中压电源转换器高功率固态电源转换器是许多应用中的关键组件,例如从电网获取可再生能源和能源存储,例如电网。太阳能、风能和电池以及驱动大功率电机。传统上,为了简单起见,大多数此类电源转换器的额定电压都低于 1 kV 或较低的电压等级。最近,为了进一步降低系统成本和提高效率,业界正在转向中压解决方案,这种解决方案可以直接接入中压电网,以节省笨重的变压器、电缆和转换器成本。为了实现这一目标,需要开发一种高效、高功率密度/小体积、交流输出波形接近理想正弦波形的中压大功率固态功率变换器。为了满足这一愿望,主要研究人员提出了一种新颖的模块化高密度中压功率变换器拓扑,即三电平混合模块化多电平变换器,它将级联模块化单元的分支与传统的三电平结构相结合。所提出的概念导致了中压应用的各种拓扑变化。特别是,与经典的模块化多电平转换器解决方案相比,采用二极管作为三电平结构的整流器变体可以显着节省成本和总系统尺寸并提高效率。与现有技术解决方案相比,该解决方案可将转换器体积/重量减少多达 50%,并将转换器效率提高多达 30%,同时实现相同的电压和电流额定值。此外,由于采用模块化设计,所提出的解决方案还可以实现高保真交流输出,并且可以扩展到更高的额定电压以适应未来的应用,而无需进行大量的工程设计返工。低压和中压碳化硅器件可用于所提出的拓扑系列中,以利用其节省的开关损耗来合成高保真交流输出。这种模块化设计还意味着内置系统冗余,可以大幅提高系统可靠性。因此,所提出的解决方案的智能优点将对广泛的中压电力转换应用产生重大影响,例如可再生能源电网集成、海底和海上直流电力输送、海军中压直流电力系统、工业变速驱动器和运输高速电力推进系统。这种拓扑及其变体存在许多基本的控制挑战和操作分析。通过所提出的程序,将对单位功率因数和非单位功率因数条件下的建议转换器拓扑系列进行详细的拓扑和操作分析。将在仿真中探索和验证相臂和相能量平衡策略。其好处将通过对所选示例系统的详细工程设计进行分析,包括故障处理能力。最终,将开发出按比例缩小的原型,以展示其创新和对行业的好处。大学提供的独特的行业联盟和海军合作将促进行业成员、海军研发社区和学术研究人员之间的合作关系,从而通过该 NSF 研究计划产生重大影响。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid Modular Multilevel Rectifier: A New High-Efficient High-Performance Rectifier Topology for HVDC Power Delivery
混合模块化多电平整流器:用于 HVDC 供电的新型高效高性能整流器拓扑
A Hybrid Modular Multilevel Converter Family With Higher Power Density and Efficiency
具有更高功率密度和效率的混合模块化多电平转换器系列
Modeling and Control Method for a Three-Level Hybrid Modular Multilevel Converter
三电平混合模块化多电平变流器的建模与控制方法
A New Hybrid Modular Multilevel Rectifier as MVac–LVdc Active Front-End Converter for Fast Charging Stations and Data Centers
一种新型混合模块化多电平整流器,作为快速充电站和数据中心的 MVac-LVdc 有源前端转换器
  • DOI:
    10.1109/tpel.2023.3283469
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Jian Liu;J. Motwani;R. Burgos;Zhiding Zhou;D. Dong
  • 通讯作者:
    D. Dong
Analysis of Hybrid Modular Multilevel Rectifier Operated at Nonunity Power Factor for HVDC Applications
HVDC 应用中非统一功率因数运行的混合模块化多电平整流器分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dong Dong其他文献

In-situ Y3Al5O12 enhances comprehensive properties of alumina-based ceramic cores by vat photopolymerization 3D printing
原位Y3Al5O12通过还原光聚合3D打印增强氧化铝基陶瓷芯材的综合性能
  • DOI:
    10.1016/j.addma.2023.103645
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Xiang Li;H. Su;Dong Dong;Hao Jiang;Yuan Liu;Zhonglin Shen;Yinuo Guo;Di Zhao;Zhuohua Zhang;M. Guo
  • 通讯作者:
    M. Guo
A Solid-State Circuit Breaker without Current Limiting Inductor
一种无限流电感的固态断路器
ETNAS: An energy consumption task-driven neural architecture search
ETNAS:能耗任务驱动的神经架构搜索
  • DOI:
    10.1016/j.suscom.2023.100926
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dong Dong;Hongxu Jiang;Xuekai Wei;Yanfei Song;Zhuang Xu;Jason Wang
  • 通讯作者:
    Jason Wang
Differential effects of chromatin regulators and transcription factors on gene regulation: a nucleosomal perspective
染色质调节因子和转录因子对基因调节的不同影响:核小体视角
  • DOI:
    10.1093/bioinformatics/btq637
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Dong Dong;Xiaojian Shao;Zhaolei Zhang
  • 通讯作者:
    Zhaolei Zhang
Kainic Acid Impairs the Memory Behavior of APP23 Mice by Increasing Brain Amyloid Load through a Tumor Necrosis Factor-α-Dependent Mechanism.
红藻氨酸通过肿瘤坏死因子-α 依赖性机制增加脑淀粉样蛋白负荷,从而损害 APP23 小鼠的记忆行为。
  • DOI:
    10.3233/jad-171137
  • 发表时间:
    2018-06-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Ruan;Shi;Xu Wang;Dong Dong;Donghui Shen;Jie Zhu;Xiang
  • 通讯作者:
    Xiang

Dong Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dong Dong', 18)}}的其他基金

CAREER: SiC High-Frequency High-Voltage Power Converters with Partial-Discharge Mitigation and Electromagnetic Noise Containment
职业:具有局部放电缓解和电磁噪声抑制功能的 SiC 高频高压电源转换器
  • 批准号:
    2143488
  • 财政年份:
    2022
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Continuing Grant
GOALI: 1.2 kV Vertical GaN FETs enabled Novel Ultra-High-Density Bidirectional Soft-switching Dc-Dc Charger Architecture with Scalable Electronic-embedded Transformer
GOALI:1.2 kV 垂直 GaN FET 启用具有可扩展电子嵌入式变压器的新型超高密度双向软开关 DC-DC 充电器架构
  • 批准号:
    2202620
  • 财政年份:
    2022
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant

相似国自然基金

novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
  • 批准号:
    2229012
  • 财政年份:
    2023
  • 资助金额:
    $ 19.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了