AI Institute for Societal Decision Making (AI-SDM)
人工智能社会决策研究所 (AI-SDM)
基本信息
- 批准号:2229881
- 负责人:
- 金额:$ 1987.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Decision making in domains such as a public health crisis or disaster response has a significant societal and economic impact. These domains present critical challenges for decision-making as they require complex, potentially life-saving, decisions to be made under dynamic, uncertain and resource-constrained scenarios, while accounting for factors that are key to acceptance of the decisions, such as stakeholders' biases and perception of risk, trust, and equity. AI advancements and data availability can complement human limitations in navigating this complex decision space, however, current systems fail to account for the stakeholders' mental states and behavior. The AI institute for Societal Decision Making (AI-SDM) will target this opportunity at the confluence of social decision sciences and AI by developing human-centric AI for decision-making and inter-disciplinary training, to enable transformative solutions to societal decision challenges. By bringing AI and social science researchers, AI-SDM will enable emergency managers, public health officials, first responders, community workers, and the public to make quick, data-driven, and resource-efficient decisions, while also improving outcomes by accounting for human factors governing acceptance. The vision of AI-SDM will be realized via development of novel AI theory and methods, translational research, training, and outreach, enabled by partnerships among diverse universities, government organizations, corporate partners, community colleges, public libraries, and high schools.The institute will establish the role of AI in advancing and bridging human and autonomous decision-making, under the use-inspired challenges of working in environments that are dynamic, uncertain, resource constrained, and require societal acceptance arising in public health crisis and disaster response. Specifically, the foundational research will develop (1) computational representations of human decision processes, (2) robust aggregation methods for collective decision-making, (3) multi-objective autonomous decision support tools, and corresponding innovations in (4) causal and counterfactual reasoning. These foundational foci are inspired by, and will be applied to, equitable resource allocation to improve public health and disaster outcomes, timely targeted interventions informed by human decision-making to encourage adherence to policy recommendations, and adoption of AI decision support by understanding how adoption can be modulated by different use patterns. The research will be guided by theoretical advances in computational cognitive science, social-choice theory, distribution-free statistics, game theory, casual and counterfactual reasoning, and interactive and autonomous machine learning. In addition to impacting use-case domains via a wide network of partners, AI-SDM will develop the next generation of workforce trained on human-centric AI and an AI-aware public via broader impact efforts including professional development workshops for high school educators, enrichment and leadership activities for under-represented students, inter-disciplinary degrees and courses, curriculum co-design with community college and educational partners, workforce training, and public engagement activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
诸如公共卫生危机或灾难反应等领域的决策具有重大的社会和经济影响。这些领域对决策提出了关键的挑战,因为它们需要在动态,不确定和资源约束的情况下做出复杂的,潜在的挽救生命的决策,同时考虑到接受决策的关键因素,例如利益相关者的偏见以及对风险,信任和公平的看法。 AI的进步和数据可用性可以补充人类在这一复杂的决策空间中的限制,但是,当前系统无法解释利益相关者的精神状态和行为。 AI社会决策研究所(AI-SDM)将通过开发以人为中心的AI来实现社会决策科学和AI的融合来针对这一机会,以进行决策和跨学科培训,以实现对社会决策挑战的变革性解决方案。通过邀请AI和社会科学研究人员,AI-SDM将使紧急经理,公共卫生官员,急救人员,社区工作者和公众能够做出快速,数据驱动和资源有效的决策,同时还通过考虑接受接受性的人为因素来改善结果。 The vision of AI-SDM will be realized via development of novel AI theory and methods, translational research, training, and outreach, enabled by partnerships among diverse universities, government organizations, corporate partners, community colleges, public libraries, and high schools.The institute will establish the role of AI in advancing and bridging human and autonomous decision-making, under the use-inspired challenges of working in environments that are dynamic, uncertain, resource受到限制,需要在公共卫生危机和灾难反应中引起的社会接受。具体而言,基础研究将开发(1)人类决策过程的计算表示,(2)用于集体决策的强大聚合方法,(3)多目标自主决策支持工具以及(4)因果关系和反事实推理中的相应创新。这些基础焦点受到公平资源分配的启发,以改善公共健康和灾难成果,及时针对人类决策所告知的针对性干预措施,以鼓励遵守政策建议,并通过理解如何通过不同使用模式来理解采用方式来采用AI决策支持。这项研究将由计算认知科学,社会选择理论,无分配统计,游戏理论,随意和反事实推理以及互动和自主的机器学习的理论进步指导。 In addition to impacting use-case domains via a wide network of partners, AI-SDM will develop the next generation of workforce trained on human-centric AI and an AI-aware public via broader impact efforts including professional development workshops for high school educators, enrichment and leadership activities for under-represented students, inter-disciplinary degrees and courses, curriculum co-design with community college and educational partners, workforce training, and public参与活动。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strategyproof Voting under Correlated Beliefs
相关信念下的策略证明投票
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Daniel Halpern, Rachel Li
- 通讯作者:Daniel Halpern, Rachel Li
Optimal Engagement-Diversity Tradeoffs in Social Media
社交媒体中的最佳参与多样性权衡
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Fabian Baumann, Daniel Halpern
- 通讯作者:Fabian Baumann, Daniel Halpern
School Redistricting: Wiping Unfairness Off the Map
学校重新划分:消除地图上的不公平现象
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Ariel D. Procaccia, Isaac Robinson
- 通讯作者:Ariel D. Procaccia, Isaac Robinson
The Distortion of Binomial Voting Defies Expectation
二项式投票的扭曲超出了预期
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yannai Gonczarowski, Gregory Kehne
- 通讯作者:Yannai Gonczarowski, Gregory Kehne
Manipulation-Robust Selection of Citizens’ Assemblies
公民集会的操纵-稳健选择
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Bailey Flanigan, Jennifer Liang
- 通讯作者:Bailey Flanigan, Jennifer Liang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aarti Singh其他文献
Minimax rates for homology inference
同源推理的极小极大率
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Sivaraman Balakrishnan;A. Rinaldo;Don Sheehy;Aarti Singh;L. Wasserman - 通讯作者:
L. Wasserman
Scope of Automation in Semantics-Driven Multimedia Information Retrieval From Web
语义驱动的网络多媒体信息检索的自动化范围
- DOI:
10.4018/978-1-5225-2483-0.ch001 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Aarti Singh;N. Dey;A. Ashour - 通讯作者:
A. Ashour
Supercritical carbon dioxide extraction of essential oils from leaves of Eucalyptus globulus L., their analysis and application
超临界二氧化碳萃取蓝桉叶精油及其分析与应用
- DOI:
10.1039/c5ay02009c - 发表时间:
2016 - 期刊:
- 影响因子:3.1
- 作者:
Aarti Singh;Anees Ahmad;R. Bushra - 通讯作者:
R. Bushra
Inventory Mistakes and the Great Moderation
库存错误和大节制
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
J. Morley;Aarti Singh - 通讯作者:
Aarti Singh
AlphaNet: Improving Long-Tail Classification By Combining Classifiers
AlphaNet:通过组合分类器改进长尾分类
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Nadine Chang;Jayanth Koushik;Aarti Singh;M. Hebert;Yu;M. Tarr - 通讯作者:
M. Tarr
Aarti Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aarti Singh', 18)}}的其他基金
Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
- 批准号:
2134133 - 财政年份:2021
- 资助金额:
$ 1987.97万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Personalized Predictive Neuromarkers for Stress-Related Health Risks
QuBBD:合作研究:压力相关健康风险的个性化预测神经标志物
- 批准号:
1557572 - 财政年份:2015
- 资助金额:
$ 1987.97万 - 项目类别:
Standard Grant
15th IMS New Researchers Conference
第15届IMS新研究员大会
- 批准号:
1301845 - 财政年份:2013
- 资助金额:
$ 1987.97万 - 项目类别:
Standard Grant
CAREER: Distilling information structure from big and dirty data: Efficient learning of clusters and graphs in modern datasets
职业:从大数据和脏数据中提取信息结构:现代数据集中集群和图的高效学习
- 批准号:
1252412 - 财政年份:2013
- 资助金额:
$ 1987.97万 - 项目类别:
Continuing Grant
BIGDATA: Mid-Scale: DA: Distribution-based machine learning for high dimensional datasets
BIGDATA:中规模:DA:针对高维数据集的基于分布的机器学习
- 批准号:
1247658 - 财政年份:2013
- 资助金额:
$ 1987.97万 - 项目类别:
Continuing Grant
III: Small: Spectral Methods for Active Clustering and Bi-Clustering
III:小:主动聚类和双聚类的谱方法
- 批准号:
1116458 - 财政年份:2011
- 资助金额:
$ 1987.97万 - 项目类别:
Standard Grant
相似国自然基金
中国地方综合科研机构组织优化模型及评价体系研究
- 批准号:79060001
- 批准年份:1990
- 资助金额:2.5 万元
- 项目类别:地区科学基金项目
中国地方综合科研机构发展研究
- 批准号:79060002
- 批准年份:1990
- 资助金额:3.0 万元
- 项目类别:地区科学基金项目
相似海外基金
思春期の危機における若者を支える社会関係資本と居場所・地域空間に関する研究
研究在青春期危机期间支持年轻人的社会资本和场所/当地空间
- 批准号:
24K07811 - 财政年份:2024
- 资助金额:
$ 1987.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
戦後日本の「農村メディア」と地域社会の総合的研究:家の光協会所蔵資料を中心に
战后日本“农村媒体”与地方社区的综合研究——以伊江之光协会持有的资料为中心
- 批准号:
23K25364 - 财政年份:2024
- 资助金额:
$ 1987.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
刑務所出所者等の再犯防止と改善更生に必要な社会内での支援に関する比較法的研究
预防再犯、刑满释放人员社会救助等必要的社会支持的比较法研究
- 批准号:
24K04593 - 财政年份:2024
- 资助金额:
$ 1987.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The impact of auditory access on the development of speech perception
听觉访问对言语感知发展的影响
- 批准号:
10677429 - 财政年份:2023
- 资助金额:
$ 1987.97万 - 项目类别:
Accelerated Neuromodulation of Prefrontal Circuitry during Clozapine Treatment
氯氮平治疗期间前额叶回路的加速神经调节
- 批准号:
10726660 - 财政年份:2023
- 资助金额:
$ 1987.97万 - 项目类别: