Collaborative Research: CompCog: Psychological, Computational, and Neural Adequacy in a Deep Learning Model of Human Speech Recognition

合作研究:CompCog:人类语音识别深度学习模型中的心理、计算和神经充分性

基本信息

  • 批准号:
    2043903
  • 负责人:
  • 金额:
    $ 43.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Computer technology for speech recognition has advanced to an amazing degree over the past decade. Many of us use it daily -- to dictate text messages on smart phones or to navigate automated phone systems. As good as these systems are, humans still outperform them in complex, crowded, and noisy acoustic environments. If more were known concerning how humans adapt to these challenging situations, speech technology might be made more adaptive and robust. For example, computer systems for speech recognition use complex "deep learning" networks that often need to be trained in ways that are very different from how humans learn language. Although neural network models aimed at simulating human language processing are much simpler, which allows scientists to develop hypotheses about how human language processing works, they don't use real speech as input. Instead, they use phonetic features that are more like text than speech and so fail to address the core problem of how humans map the acoustics of speech to words. This research program focuses on bridging the gap between the complex artificial neural network models used in current technologies for speech recognition and the simpler neural network models used to investigate how humans actually perceive speech.This research program builds on a new neural network model for speech that aims to achieve high recognition accuracy on many words produced by several speakers. Crucially, the model can do this with minimal complexity (using many fewer layers than commercial speech recognition systems), which allows researchers to understand the computations it performs. The research plans include extending the model to a large vocabulary, training on naturalistic speech, and adding biologically plausible preprocessing modeled on the human auditory pathways. The model will be compared with key aspects of human spoken word recognition behavior as well as with human neural responses to spoken speech. The work has the potential to generate new insights to advance speech technology by making it more robust in challenging environments, with potential impact on speech technology used for health, law, education, and the automatic captioning that makes speech accessible to the deaf and hard of hearing. In addition, individuals ranging from high school students to Ph.D. students will be part of the research team and will have rich research experiences that will promote development of technical skills useful for careers in academic research or a variety of non-academic careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,用于语音识别的计算机技术已达到了惊人的学位。我们中的许多人每天都使用它 - 指示智能手机上的短信或导航自动电话系统。就像这些系统一样好,人类仍然在复杂,拥挤和嘈杂的声学环境中胜过它们。如果有更多关于人类如何适应这些具有挑战性的情况的知情,那么语音技术可能会变得更加适应性和强大。例如,语音识别的计算机系统使用复杂的“深度学习”网络,这些网络通常需要以与人类学习语言有很大不同的方式进行培训。尽管旨在模拟人类语言处理的神经网络模型要简单得多,这使科学家可以对人类语言处理的工作方式提出假设,但他们不使用真实的语音作为输入。取而代之的是,他们使用的语音功能更像文本而不是语音,因此无法解决人类如何将语音声学映射到单词的核心问题。该研究计划的重点是弥合当前技术中用于语音识别技术的复杂人工神经网络模型与用于研究人类实际上如何感知语音的更简单的神经网络模型之间的差距。该研究计划基于一种新的语音神经网络模型,该模型旨在在许多讲话者中产生的许多单词实现高认识精度。至关重要的是,该模型可以以最小的复杂性(使用比商业语音识别系统少得多的层)来做到这一点,从而使研究人员能够理解其执行的计算。研究计划包括将模型扩展到大型词汇,自然主义语音的培训,并添加在人类听觉途径上建模的生物学上合理的预处理。该模型将与人类口头识别行为的关键方面以及人类对口语的神经反应进行比较。这项工作有可能通过在充满挑战的环境中提高言语技术来产生新的见解,从而对健康,法律,教育和自动字幕的潜在影响,这使聋人和听力障碍都可以访问语音。此外,从高中生到博士学位的个人不等。学生将成为研究团队的一部分,并将拥有丰富的研究经验,这些研究经验将促进技术技能的发展,对学术研究或各种非学术职业的职业有用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估标准来通过评估来获得支持的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A tale of two lexica: Investigating computational pressures on word representation with neural networks.
  • DOI:
    10.3389/frai.2023.1062230
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Avcu, Enes;Hwang, Michael;Brown, Kevin Scott;Gow, David W.
  • 通讯作者:
    Gow, David W.
How Feedback in Interactive Activation Improves Perception
交互式激活中的反馈如何改善感知
Investigating the Extent to which Distributional Semantic Models Capture a Broad Range of Semantic Relations
  • DOI:
    10.1111/cogs.13291
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Brown,Kevin S.;Yee,Eiling;McRae,Ken
  • 通讯作者:
    McRae,Ken
Using TMS to evaluate a causal role for right posterior temporal cortex in talker-specific phonetic processing
  • DOI:
    10.1016/j.bandl.2023.105264
  • 发表时间:
    2023-04-21
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Luthra,Sahil;Mechtenberg,Hannah;Myers,Emily B.
  • 通讯作者:
    Myers,Emily B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Magnuson其他文献

James Magnuson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Magnuson', 18)}}的其他基金

CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
  • 批准号:
    2207770
  • 财政年份:
    2022
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
Computational approaches to human spoken word recognition
人类口语单词识别的计算方法
  • 批准号:
    1754284
  • 财政年份:
    2018
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
NRT-UtB: Science of learning, from neurobiology to real-world application: a problem-based approach
NRT-UtB:学习科学,从神经生物学到现实世界应用:基于问题的方法
  • 批准号:
    1735225
  • 财政年份:
    2017
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Real-world language: Future directions in the science of communication and the communication of science
现实世界语言:传播科学和科学传播的未来方向
  • 批准号:
    1747486
  • 财政年份:
    2017
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
IGERT: Language plasticity - Genes, Brain, Cognition and Computation
IGERT:语言可塑性 - 基因、大脑、认知和计算
  • 批准号:
    1144399
  • 财政年份:
    2012
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
CAREER: The Time Course of Bottom-up and Top-down Integration in Language Understanding
职业:语言理解中自下而上和自上而下整合的时间进程
  • 批准号:
    0748684
  • 财政年份:
    2008
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
Compensation for Coarticulation: Implications for the Basis and Architecture of Speech Perception
协同发音的补偿:对语音感知的基础和架构的影响
  • 批准号:
    0642300
  • 财政年份:
    2007
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Special Foreign Currency Travel Support (In Indian Currency)To Participate in the Int'l Symposium on Lectins As Tools InBiology and Medicine; Calcutta, India; January 1981
特别外币旅行支持(印度货币)参加凝集素作为生物学和医学工具的国际研讨会;
  • 批准号:
    8022021
  • 财政年份:
    1981
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
  • 批准号:
    2235362
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
  • 批准号:
    2235363
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Adversarial Collaborative Research on Intuitive Physical Reasoning
协作研究:CompCog:直观物理推理的对抗性协作研究
  • 批准号:
    2121009
  • 财政年份:
    2021
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了