Collaborative Research: CompCog: Psychological, Computational, and Neural Adequacy in a Deep Learning Model of Human Speech Recognition

合作研究:CompCog:人类语音识别深度学习模型中的心理、计算和神经充分性

基本信息

  • 批准号:
    2043903
  • 负责人:
  • 金额:
    $ 43.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Computer technology for speech recognition has advanced to an amazing degree over the past decade. Many of us use it daily -- to dictate text messages on smart phones or to navigate automated phone systems. As good as these systems are, humans still outperform them in complex, crowded, and noisy acoustic environments. If more were known concerning how humans adapt to these challenging situations, speech technology might be made more adaptive and robust. For example, computer systems for speech recognition use complex "deep learning" networks that often need to be trained in ways that are very different from how humans learn language. Although neural network models aimed at simulating human language processing are much simpler, which allows scientists to develop hypotheses about how human language processing works, they don't use real speech as input. Instead, they use phonetic features that are more like text than speech and so fail to address the core problem of how humans map the acoustics of speech to words. This research program focuses on bridging the gap between the complex artificial neural network models used in current technologies for speech recognition and the simpler neural network models used to investigate how humans actually perceive speech.This research program builds on a new neural network model for speech that aims to achieve high recognition accuracy on many words produced by several speakers. Crucially, the model can do this with minimal complexity (using many fewer layers than commercial speech recognition systems), which allows researchers to understand the computations it performs. The research plans include extending the model to a large vocabulary, training on naturalistic speech, and adding biologically plausible preprocessing modeled on the human auditory pathways. The model will be compared with key aspects of human spoken word recognition behavior as well as with human neural responses to spoken speech. The work has the potential to generate new insights to advance speech technology by making it more robust in challenging environments, with potential impact on speech technology used for health, law, education, and the automatic captioning that makes speech accessible to the deaf and hard of hearing. In addition, individuals ranging from high school students to Ph.D. students will be part of the research team and will have rich research experiences that will promote development of technical skills useful for careers in academic research or a variety of non-academic careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年里,用于语音识别的计算机技术已经发展到了惊人的程度。我们中的许多人每天都使用它——在智能手机上听写短信或导航自动电话系统。尽管这些系统非常好,但在复杂、拥挤和嘈杂的声学环境中,人类的表现仍然优于它们。如果更多地了解人类如何适应这些具有挑战性的情况,语音技术可能会变得更具适应性和鲁棒性。例如,用于语音识别的计算机系统使用复杂的“深度学习”网络,这些网络通常需要以与人类学习语言的方式非常不同的方式进行训练。尽管旨在模拟人类语言处理的神经网络模型要简单得多,这使得科学家能够提出有关人类语言处理如何工作的假设,但它们并不使用真实的语音作为输入。相反,他们使用的语音特征更像文本而不是语音,因此无法解决人类如何将语音声学映射到单词的核心问题。该研究计划的重点是弥合当前语音识别技术中使用的复杂人工神经网络模型与用于研究人类如何实际感知语音的更简单的神经网络模型之间的差距。该研究计划建立在一种新的语音神经网络模型的基础上旨在对多个说话者产生的许多单词实现高识别准确率。至关重要的是,该模型可以以最小的复杂性(使用比商业语音识别系统少得多的层)来做到这一点,这使得研究人员能够理解它执行的计算。研究计划包括将模型扩展到大词汇量、自然语音训练,以及添加仿照人类听觉路径的生物学上合理的预处理。该模型将与人类口语单词识别行为的关键方面以及人类对口语的神经反应进行比较。这项工作有可能产生新的见解,使语音技术在充满挑战的环境中更加稳健,从而推动语音技术的发展,并对用于健康、法律、教育的语音技术以及使聋哑人和残疾人能够理解语音的自动字幕产生潜在影响。听力。此外,从高中生到博士的个人。学生将成为研究团队的一部分,并将拥有丰富的研究经验,这将促进对学术研究职业或各种非学术职业有用的技术技能的发展。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A tale of two lexica: Investigating computational pressures on word representation with neural networks.
  • DOI:
    10.3389/frai.2023.1062230
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Avcu, Enes;Hwang, Michael;Brown, Kevin Scott;Gow, David W.
  • 通讯作者:
    Gow, David W.
How Feedback in Interactive Activation Improves Perception
交互式激活中的反馈如何改善感知
Investigating the Extent to which Distributional Semantic Models Capture a Broad Range of Semantic Relations
  • DOI:
    10.1111/cogs.13291
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Brown,Kevin S.;Yee,Eiling;McRae,Ken
  • 通讯作者:
    McRae,Ken
Using TMS to evaluate a causal role for right posterior temporal cortex in talker-specific phonetic processing
  • DOI:
    10.1016/j.bandl.2023.105264
  • 发表时间:
    2023-04-21
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Luthra,Sahil;Mechtenberg,Hannah;Myers,Emily B.
  • 通讯作者:
    Myers,Emily B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Magnuson其他文献

James Magnuson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Magnuson', 18)}}的其他基金

CRCNS US-Spain Research Proposal: Collaborative Research: Tracking and modeling the neurobiology of multilingual speech recognition
CRCNS 美国-西班牙研究提案:合作研究:跟踪和建模多语言语音识别的神经生物学
  • 批准号:
    2207770
  • 财政年份:
    2022
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
Computational approaches to human spoken word recognition
人类口语单词识别的计算方法
  • 批准号:
    1754284
  • 财政年份:
    2018
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
NRT-UtB: Science of learning, from neurobiology to real-world application: a problem-based approach
NRT-UtB:学习科学,从神经生物学到现实世界应用:基于问题的方法
  • 批准号:
    1735225
  • 财政年份:
    2017
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Real-world language: Future directions in the science of communication and the communication of science
现实世界语言:传播科学和科学传播的未来方向
  • 批准号:
    1747486
  • 财政年份:
    2017
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
IGERT: Language plasticity - Genes, Brain, Cognition and Computation
IGERT:语言可塑性 - 基因、大脑、认知和计算
  • 批准号:
    1144399
  • 财政年份:
    2012
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
CAREER: The Time Course of Bottom-up and Top-down Integration in Language Understanding
职业:语言理解中自下而上和自上而下整合的时间进程
  • 批准号:
    0748684
  • 财政年份:
    2008
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Continuing Grant
Compensation for Coarticulation: Implications for the Basis and Architecture of Speech Perception
协同发音的补偿:对语音感知的基础和架构的影响
  • 批准号:
    0642300
  • 财政年份:
    2007
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Special Foreign Currency Travel Support (In Indian Currency)To Participate in the Int'l Symposium on Lectins As Tools InBiology and Medicine; Calcutta, India; January 1981
特别外币旅行支持(印度货币)参加凝集素作为生物学和医学工具的国际研讨会;
  • 批准号:
    8022021
  • 财政年份:
    1981
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
  • 批准号:
    2235362
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
  • 批准号:
    2235363
  • 财政年份:
    2023
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: Adversarial Collaborative Research on Intuitive Physical Reasoning
协作研究:CompCog:直观物理推理的对抗性协作研究
  • 批准号:
    2121009
  • 财政年份:
    2021
  • 资助金额:
    $ 43.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了