Natural Hazards Engineering Research Infrastructure: Experimental Facility with Boundary Layer Wind Tunnel 2021-2025
自然灾害工程研究基础设施:边界层风洞实验设施2021-2025
基本信息
- 批准号:2037725
- 负责人:
- 金额:$ 450.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Natural Hazards Engineering Research Infrastructure (NHERI) is supported by the National Science Foundation (NSF) as a distributed, multi-user national facility to provide the natural hazards engineering research community with access to research infrastructure that includes earthquake and wind engineering experimental facilities, cyberinfrastructure (CI), computational modeling and simulation tools, high performance computing resources, and research data, as well as education and community outreach activities. Originally funded under program solicitations NSF 14-605 and NSF 15-598, NHERI has operated since 2015 through separate, but coordinated, five-year research infrastructure awards for a Network Coordination Office, CI, Computational Modeling and Simulation Center, and Experimental Facilities, including a post-disaster, rapid response research facility. Information about NHERI resources is available at the NHERI web portal (https://www.DesignSafe-ci.org). Awards made for NHERI contribute to NSF's role in the National Earthquake Hazards Reduction Program (NEHRP) and the National Windstorm Impact Reduction Program (NWIRP). NHERI Experimental Facilities will provide access to their experimental resources, user services, and data management infrastructure for NSF-supported research and education awards. This award will renew the NHERI Experimental Facility at the University of Florida from January 1, 2021, to September 30, 2025. Through this award, the University of Florida will continue to maintain, operate, and enhance its Boundary Layer Wind Tunnel (BLWT) component of NHERI, which enables research to understand the vulnerability of civil infrastructure to the destructive impacts of strong winds and improve building codes and standards to safeguard hazard-prone communities. The BLWT is an important tool for assessing wind loads on structures through the simulation of the effects of extreme winds (hurricanes, thunderstorms, and tornadoes) on scaled models in a controlled environment. This fundamental understanding of wind forces is a critical aspect of mitigating risk, reducing damage, and saving lives by enabling engineers to perform cost effective design to resist extreme winds. The facility will cultivate an important ecosystem for the hazard engineering workforce through the development and implementation of a K-12 teacher training program to increase pedagogical knowledge about wind hazards. The facility will also conduct annual user workshops and host Research Experiences for Undergraduate students.Combined with the collocated high-performance computing cluster, the NHERI facility at the University of Florida will provide the experimental and computational capacity, staffing, domain expertise, and end-to-end project services that enable transformative research. The BLWT is a culmination of multiple technologies that improve the range and throughput of wind hazard experiments that can be performed. The experimental automation tools will provide researchers flexibility in their test configurations while supporting high-throughput testing and data collection. The approach terrain can be rapidly reconfigured over a continuum of options to achieve desired flow conditions over a wide range of geometric scales. The instrumentation gantry can traverse preset paths to collect wind field measurements anywhere in the tunnel test section using multiple 3D probes or a stereoscopic particle imagine velocimetry system. The Flow Field Modulator (FFM) consists of a 2D array of 319 individually controlled shrouded propellers driven by electronic speed controllers. The FFM enables the simulation of non-monotonic profiles and nonstationary events, such as damaging gust fronts and downbursts, at a reduced geometric scale. The facility’s cyberinfrastructure supports remote use, hybrid experiments, real-time analysis, automated data back-up, and seamless integration with the NHERI cyberinfrastructure. These experimental capabilities will provide new opportunities in wind tunnel testing and open pathways to solve outstanding wind hazard issues associated with resilient infrastructure, lifelines, wind energy, and meteorology. Experimental data generated from the research conducted at this facility will be archived in the Data Depot on the NHERI web portal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然危害工程研究基础设施(NHERI)得到国家科学基金会(NSF)作为分布式的,多用户的国家设施,可为自然危害工程研究社区提供获得地震和风力工程实验设施的研究基础设施的访问,包括Cyberinfrasture(CIBERTACTION(CI),计算上的模型和仿真工具,以及进行计算和高度计算机,以及高级计算和高级计算,包括网络和风能工程实验设施。 NHERI最初由计划招标资助NSF 14-605和NSF 15-598,自2015年以来从2015年以来通过单独但协调的五年研究基础设施奖励网络协调办公室,CI,计算建模和仿真中心以及实验性设施,包括后置措施,快速响应研究设施。有关NHERI资源的信息可在NHERI Web Portal(https://www.designsafe-ci.org)上获得。 NHERI颁发的奖项促进了NSF在国家地震危害计划(NEHRP)和国家风暴影响减少计划(NWIRP)中的作用。 NHERI实验设施将为NSF支持的研究和教育奖提供访问其实验资源,用户服务和数据管理基础架构。 This award will renew the NHERI Experimental Facility at the University of Florida from January 1, 2021, to September 30, 2025. Through this award, the University of Florida will continue to maintain, operate, and enhance its Boundary Layer Wind Tunnel (BLWT) component of NHERI, which enables research to understand the vulnerability of civil infrastructure to the destructive impacts of strong winds and improving building codes and standards to safeguard容易发生危险的社区。 BLWT是通过模拟极风(飓风,雷暴和龙卷风)在受控环境中评估极风(飓风,雷暴和龙卷风)的影响的重要工具。对风力的这种基本理解是减轻风险,减少损害并通过使工程师能够执行成本有效设计以抵抗极端风的关键方面。该设施将通过开发和实施K-12教师培训计划来培养危害工程劳动力的重要生态系统,以增加有关风危害的教学知识。该设施还将为本科生举办年度用户研讨会和主持研究经验,并与佛罗里达大学的NEHHERI设施结合使用,将提供实验和计算能力,人员配备,域专业知识和端到端的项目服务,以实现变革性研究。 BLWT是多种技术的结晶,可改善可以执行的风危害实验的范围和吞吐量。实验性自动化工具将为研究人员提供灵活性,同时支持高通量测试和数据收集。可以在持续的选项上快速重新配置该方法地形,以在各种几何尺度上达到所需的流量条件。仪器龙门可以使用多个3D探针或立体粒子想象力赛车仪系统在隧道测试部分中的任何地方收集风场测量。流场调节器(FFM)由319个由319个单独控制的浮雕螺旋桨组成,该驱动器由电子速度控制器驱动。 FFM可以以减少的几何量表来模拟非单调概况和非组织事件,例如破坏阵风的前沿和向下爆发。该设施的网络基础结构支持远程使用,混合实验,实时分析,自动数据备份以及与Nheri Cyberinfradstructure的无缝集成。这些实验能力将为风洞测试和开放途径提供新的机会,以解决与弹性基础设施,生命线,风能和气象相关的明显风危害问题。从该设施进行的研究产生的实验数据将在NHERI Web门户网站的数据仓库中存档。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子和更广泛的影响审查标准来通过评估来诚实地表示支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wind profiles in a boundary layer wind tunnel based on different approach terrain configurations
- DOI:10.17603/ds2-h4pt-d221
- 发表时间:2023-01-01
- 期刊:
- 影响因子:0
- 作者:Ojeda-Tuz, M.
- 通讯作者:Ojeda-Tuz, M.
Automated terrain generation for precise atmospheric boundary layer simulation in the wind tunnel
- DOI:10.1016/j.jweia.2020.104276
- 发表时间:2020-12-01
- 期刊:
- 影响因子:4.8
- 作者:Catarelli, R. A.;Fernandez-Caban, P. L.;Matyas, C. J.
- 通讯作者:Matyas, C. J.
Surrogate-based cyber-physical aerodynamic shape optimization of high-rise buildings using wind tunnel testing
- DOI:10.1016/j.jweia.2023.105586
- 发表时间:2023-11
- 期刊:
- 影响因子:4.8
- 作者:Wei-Ting Lu;Brian M. Phillips;Zhaoshuo Jiang
- 通讯作者:Wei-Ting Lu;Brian M. Phillips;Zhaoshuo Jiang
Automation and New Capabilities in the University of Florida NHERI Boundary Layer Wind Tunnel
- DOI:10.3389/fbuil.2020.558151
- 发表时间:2020-09-16
- 期刊:
- 影响因子:3
- 作者:Catarelli, Ryan A.;Fernandez-Caban, Pedro L.;Prevatt, David O.
- 通讯作者:Prevatt, David O.
Effects of side and corner modification on the aerodynamic behavior of high-rise buildings considering serviceability and survivability
- DOI:10.1016/j.jweia.2023.105324
- 发表时间:2023-02
- 期刊:
- 影响因子:4.8
- 作者:Wei Lu;B. Phillips;Zhaoshuo Jiang
- 通讯作者:Wei Lu;B. Phillips;Zhaoshuo Jiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Bridge其他文献
Digital Twin Framework for Bridge Structural Health Monitoring Utilizing Existing Technologies: New Paradigm for Enhanced Management, Operation, and Maintenance
利用现有技术进行桥梁结构健康监测的数字孪生框架:增强管理、运营和维护的新范式
- DOI:
10.1177/03611981231208908 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Aaron M. Costin;Alireza Adibfar;Jennifer Bridge - 通讯作者:
Jennifer Bridge
Jennifer Bridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Bridge', 18)}}的其他基金
CAREER: Loading on Coastal Bridges in Windstorms Using Rapidly Deployable Sensor Network
职业:使用快速部署的传感器网络在暴风雨中为沿海桥梁装载货物
- 批准号:
1452911 - 财政年份:2015
- 资助金额:
$ 450.24万 - 项目类别:
Standard Grant
相似国自然基金
多制约因素下的降雨型堆积层滑坡危险性动态评价及其优化方法研究
- 批准号:42377164
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
广域残积土滑坡强降雨触发机制与危险性动态预测研究
- 批准号:42301103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于土—水耦合作用的潜在滑坡堵江灾害链早期识别与危险性定量预测
- 批准号:42377193
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
未知危险场景下智能汽车环境感知系统性能劣化机理分析与自进化提升方法研究
- 批准号:52372408
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
环境兽用抗生素暴露对儿童心血管危险因素聚集影响及SCAP-SREBP脂代谢通路基因甲基化调控机制研究
- 批准号:82373593
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a Graphics Processing Unit (GPU)-driven Paradigm
职业:利用图形处理单元 (GPU) 驱动的范例加速自然灾害工程中的实时混合物理数值模拟
- 批准号:
2310171 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Continuing Grant
Natural Hazards Engineering Research Infrastructure (NHERI) Decadal Visioning for FY 2026-FY 2035
自然灾害工程研究基础设施 (NHERI) 2026 财年至 2035 财年十年愿景
- 批准号:
2227014 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Cooperative Agreement
CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a Graphics Processing Unit (GPU)-driven Paradigm
职业:利用图形处理单元 (GPU) 驱动的范例加速自然灾害工程中的实时混合物理数值模拟
- 批准号:
2145665 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Continuing Grant
Natural Hazards Engineering Research Infrastructure: Large, High-Performance Outdoor Shake Table 2022-2025
自然灾害工程研究基础设施:大型高性能户外振动台 2022-2025
- 批准号:
2227407 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Cooperative Agreement
POSE: Phase I: Tuitus - A sustainable, inclusive, open ecosystem for Natural Hazards Engineering
POSE:第一阶段:Tuitus - 一个可持续、包容、开放的自然灾害工程生态系统
- 批准号:
2229702 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Standard Grant