Natural Hazards Engineering Research Infrastructure: Experimental Facility with Boundary Layer Wind Tunnel 2021-2025
自然灾害工程研究基础设施:边界层风洞实验设施2021-2025
基本信息
- 批准号:2037725
- 负责人:
- 金额:$ 450.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Cooperative Agreement
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Natural Hazards Engineering Research Infrastructure (NHERI) is supported by the National Science Foundation (NSF) as a distributed, multi-user national facility to provide the natural hazards engineering research community with access to research infrastructure that includes earthquake and wind engineering experimental facilities, cyberinfrastructure (CI), computational modeling and simulation tools, high performance computing resources, and research data, as well as education and community outreach activities. Originally funded under program solicitations NSF 14-605 and NSF 15-598, NHERI has operated since 2015 through separate, but coordinated, five-year research infrastructure awards for a Network Coordination Office, CI, Computational Modeling and Simulation Center, and Experimental Facilities, including a post-disaster, rapid response research facility. Information about NHERI resources is available at the NHERI web portal (https://www.DesignSafe-ci.org). Awards made for NHERI contribute to NSF's role in the National Earthquake Hazards Reduction Program (NEHRP) and the National Windstorm Impact Reduction Program (NWIRP). NHERI Experimental Facilities will provide access to their experimental resources, user services, and data management infrastructure for NSF-supported research and education awards. This award will renew the NHERI Experimental Facility at the University of Florida from January 1, 2021, to September 30, 2025. Through this award, the University of Florida will continue to maintain, operate, and enhance its Boundary Layer Wind Tunnel (BLWT) component of NHERI, which enables research to understand the vulnerability of civil infrastructure to the destructive impacts of strong winds and improve building codes and standards to safeguard hazard-prone communities. The BLWT is an important tool for assessing wind loads on structures through the simulation of the effects of extreme winds (hurricanes, thunderstorms, and tornadoes) on scaled models in a controlled environment. This fundamental understanding of wind forces is a critical aspect of mitigating risk, reducing damage, and saving lives by enabling engineers to perform cost effective design to resist extreme winds. The facility will cultivate an important ecosystem for the hazard engineering workforce through the development and implementation of a K-12 teacher training program to increase pedagogical knowledge about wind hazards. The facility will also conduct annual user workshops and host Research Experiences for Undergraduate students.Combined with the collocated high-performance computing cluster, the NHERI facility at the University of Florida will provide the experimental and computational capacity, staffing, domain expertise, and end-to-end project services that enable transformative research. The BLWT is a culmination of multiple technologies that improve the range and throughput of wind hazard experiments that can be performed. The experimental automation tools will provide researchers flexibility in their test configurations while supporting high-throughput testing and data collection. The approach terrain can be rapidly reconfigured over a continuum of options to achieve desired flow conditions over a wide range of geometric scales. The instrumentation gantry can traverse preset paths to collect wind field measurements anywhere in the tunnel test section using multiple 3D probes or a stereoscopic particle imagine velocimetry system. The Flow Field Modulator (FFM) consists of a 2D array of 319 individually controlled shrouded propellers driven by electronic speed controllers. The FFM enables the simulation of non-monotonic profiles and nonstationary events, such as damaging gust fronts and downbursts, at a reduced geometric scale. The facility’s cyberinfrastructure supports remote use, hybrid experiments, real-time analysis, automated data back-up, and seamless integration with the NHERI cyberinfrastructure. These experimental capabilities will provide new opportunities in wind tunnel testing and open pathways to solve outstanding wind hazard issues associated with resilient infrastructure, lifelines, wind energy, and meteorology. Experimental data generated from the research conducted at this facility will be archived in the Data Depot on the NHERI web portal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然灾害工程研究基础设施 (NHERI) 由美国国家科学基金会 (NSF) 支持,作为一个分布式、多用户国家设施,为自然灾害工程研究界提供研究基础设施,包括地震和风工程实验设施、 NHERI 最初是在 NSF 14-605 和 NSF 15-598 项目征集下资助的网络基础设施 (CI)、计算建模和仿真工具、高性能计算资源和研究数据以及教育和社区外展活动。自 2015 年起,通过为网络协调办公室、CI、计算建模和模拟中心以及实验设施(包括灾后快速响应研究设施)提供单独但协调的五年研究基础设施奖项来运营 有关 NHERI 资源的信息。 NHERI 门户网站 (https://www.DesignSafe-ci.org) 为 NHERI 颁发的奖项有助于 NSF 在国家地震减灾计划 (NEHRP) 中的作用,以及国家风暴影响减少计划 (NWIRP) 将为 NSF 支持的研究和教育奖项提供实验资源、用户服务和数据管理基础设施。该奖项将更新佛罗里达大学的 NHERI 实验设施。从2021年1月1日到2025年9月30日。通过该奖项,佛罗里达大学将继续维护、运营和增强其边界层风洞NHERI 的 BLWT 组成部分,使研究能够了解民用基础设施对强风破坏性影响的脆弱性,并改进建筑规范和标准,以保护易受灾害影响的社区。 BLWT 是通过评估结构风荷载的重要工具。在受控环境中模拟极端风(飓风、雷暴和龙卷风)对比例模型的影响,是通过使工程师能够执行操作来减轻风险、减少损失和拯救生命的关键方面。该设施将通过开发和实施 K-12 教师培训计划,为灾害工程人员培养一个重要的生态系统,以增加有关风灾害的教学知识。为本科生提供研究体验。佛罗里达大学的 NHERI 设施与并置的高性能计算集群相结合,将提供实验和计算能力、人员配置、领域专业知识和端到端项目服务,以实现变革性研究。 BLWT 是多种技术的巅峰之作,可提高风灾实验的范围和吞吐量,实验自动化工具将为研究人员提供测试配置的灵活性,同时支持高通量测试和数据收集。通过一系列选项进行重新配置,以在各种几何尺度上实现所需的流动条件。仪器架可以遍历预设路径,使用多个 3D 探头或立体探头在隧道测试段的任何位置快速收集风场测量结果。想象一下粒子测速系统。流场调制器 (FFM) 由由电子速度控制器驱动的 319 个独立控制的带罩螺旋桨组成,FFM 能够模拟非单调剖面和非平稳事件,例如破坏性阵风锋和下击暴流。 ,以缩小的几何规模,该设施的网络基础设施支持远程使用、混合实验、实时分析、自动数据备份以及与 NHERI 的无缝集成。这些实验能力将为风洞测试提供新的机会,并为解决与弹性基础设施、生命线、风能和气象相关的突出风灾问题提供新的机会。在该设施进行的研究产生的实验数据将存档在网络基础设施中。 NHERI 门户网站上的数据仓库。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wind profiles in a boundary layer wind tunnel based on different approach terrain configurations
- DOI:10.17603/ds2-h4pt-d221
- 发表时间:2023-01-01
- 期刊:
- 影响因子:0
- 作者:Ojeda-Tuz, M.
- 通讯作者:Ojeda-Tuz, M.
Automated terrain generation for precise atmospheric boundary layer simulation in the wind tunnel
- DOI:10.1016/j.jweia.2020.104276
- 发表时间:2020-12-01
- 期刊:
- 影响因子:4.8
- 作者:Catarelli, R. A.;Fernandez-Caban, P. L.;Matyas, C. J.
- 通讯作者:Matyas, C. J.
Surrogate-based cyber-physical aerodynamic shape optimization of high-rise buildings using wind tunnel testing
- DOI:10.1016/j.jweia.2023.105586
- 发表时间:2023-11
- 期刊:
- 影响因子:4.8
- 作者:Wei-Ting Lu;Brian M. Phillips;Zhaoshuo Jiang
- 通讯作者:Wei-Ting Lu;Brian M. Phillips;Zhaoshuo Jiang
Effects of side and corner modification on the aerodynamic behavior of high-rise buildings considering serviceability and survivability
- DOI:10.1016/j.jweia.2023.105324
- 发表时间:2023-02
- 期刊:
- 影响因子:4.8
- 作者:Wei Lu;B. Phillips;Zhaoshuo Jiang
- 通讯作者:Wei Lu;B. Phillips;Zhaoshuo Jiang
Automation and New Capabilities in the University of Florida NHERI Boundary Layer Wind Tunnel
- DOI:10.3389/fbuil.2020.558151
- 发表时间:2020-09-16
- 期刊:
- 影响因子:3
- 作者:Catarelli, Ryan A.;Fernandez-Caban, Pedro L.;Prevatt, David O.
- 通讯作者:Prevatt, David O.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Bridge其他文献
Digital Twin Framework for Bridge Structural Health Monitoring Utilizing Existing Technologies: New Paradigm for Enhanced Management, Operation, and Maintenance
利用现有技术进行桥梁结构健康监测的数字孪生框架:增强管理、运营和维护的新范式
- DOI:
10.1177/03611981231208908 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Aaron M. Costin;Alireza Adibfar;Jennifer Bridge - 通讯作者:
Jennifer Bridge
Jennifer Bridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Bridge', 18)}}的其他基金
CAREER: Loading on Coastal Bridges in Windstorms Using Rapidly Deployable Sensor Network
职业:使用快速部署的传感器网络在暴风雨中为沿海桥梁装载货物
- 批准号:
1452911 - 财政年份:2015
- 资助金额:
$ 450.24万 - 项目类别:
Standard Grant
相似国自然基金
高辐射危害亲颗粒放射性污染物在南黄海的运动规律
- 批准号:22306184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROV声-光图像驱动的混凝土坝水下裂缝融合辨识与危害性解译方法研究
- 批准号:52309152
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
填埋场气载β-内酰胺耐药基因的霉促赋存机制与吸入量效危害
- 批准号:42377425
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
共生视角下煤矿粉尘职业危害多主体协同治理机制研究
- 批准号:52304195
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自来水处理过程典型有机磷酸三酯转化产物识别、生成机制及潜在危害研究
- 批准号:22306040
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a Graphics Processing Unit (GPU)-driven Paradigm
职业:利用图形处理单元 (GPU) 驱动的范例加速自然灾害工程中的实时混合物理数值模拟
- 批准号:
2310171 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Continuing Grant
Natural Hazards Engineering Research Infrastructure (NHERI) Decadal Visioning for FY 2026-FY 2035
自然灾害工程研究基础设施 (NHERI) 2026 财年至 2035 财年十年愿景
- 批准号:
2227014 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Cooperative Agreement
CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a Graphics Processing Unit (GPU)-driven Paradigm
职业:利用图形处理单元 (GPU) 驱动的范例加速自然灾害工程中的实时混合物理数值模拟
- 批准号:
2145665 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Continuing Grant
Natural Hazards Engineering Research Infrastructure: Large, High-Performance Outdoor Shake Table 2022-2025
自然灾害工程研究基础设施:大型高性能户外振动台 2022-2025
- 批准号:
2227407 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Cooperative Agreement
POSE: Phase I: Tuitus - A sustainable, inclusive, open ecosystem for Natural Hazards Engineering
POSE:第一阶段:Tuitus - 一个可持续、包容、开放的自然灾害工程生态系统
- 批准号:
2229702 - 财政年份:2022
- 资助金额:
$ 450.24万 - 项目类别:
Standard Grant