Compact Phase-Modulated Photonic Structures for On-Chip Multiband Spectroscopy

用于片上多波段光谱的紧凑型相位调制光子结构

基本信息

  • 批准号:
    2015700
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Due to the rapid developments of highly-integrated photonics and quantum communication technologies as well as the recent advancements of high-resolution medical imaging techniques, there is currently a compelling need for miniaturized and scalable optical elements that enable simultaneous light focusing and directional control over different spectral bands. Responding to these challenges, this project advances the understanding of optical devices that combine multiple functionalities on the nanoscale. The research team utilizes experimental and computational approaches to help develop novel materials and structures that enable controllable light focusing responses with reduced losses and enhanced efficiency for use in next generation of power-efficient nanophotonics devices, such as on-chip spectrometers, optical sensors, and miniaturized imaging systems that operate over multiple and spectral regions. The project supports one graduate student and encourages the involvement of undergraduate students in the research through a vibrant outreach program aimed at introducing fundamental concepts of optical science and engineering in their academic curricula in partnership with practical laboratory demonstrations and research activities through summer programs at Boston University. An important component of this outreach plan is to attract underrepresented minorities to a career in optical engineering through participation in the project. Finally, the outreach involves the development of a focused teaching module addressing the emerging field of Metaphotonics that will be offered to students (graduate and undergraduate) and practitioners both in industry and academia as part of the photonics outreach programs at Boston University.The primary goal of this proposal is to combine favorable aspects from both meta-optics and diffractive optics technologies in order to design, fabricate, and experimentally characterize high-performance, ultra-compact novel diffractive devices with spatially-modulated phase profiles based on high-index transparent materials and scalable multi-level fabrication. In particular, the researchers will focus on two closely related novel photonic structures: (i) single-element, ultra-compact micro- spectrometers based on achromatic axilenses with engineered phase modulation, and (ii) multi-spectral axilens-based focusing devices that achieve simultaneous focusing of radiation over selected spectral bands. The goals will be accomplished by a comprehensive integration of rigorous Rayleigh-Sommerfeld diffraction theory, device-level Finite Element Method (FEM) numerical design, materials fabrication, and experimental characterization of optical devices with integrated imaging and spectroscopic functionalities across a wide spectral range. While using silicon (Si) and titanium dioxide (TiO2) transparent dielectrics for the visible and near-infrared (NIR) spectral range, the research concepts, methods and design approach can naturally be extended to any wavelength of interest and dielectric materials platforms. The intellectual merit of the proposed research program relies on the development of novel and more powerful avenues for cost-effective, miniaturized, phase-engineered devices that are polarization insensitive, work over a large range of incidence angles, and combine highly-efficient focusing and grating responses that, in addition to optical spectroscopy, also find applications to multi- spectral optical detection, quantum information sources, and on-chip sensing. This project enables a substantial broader impact as it provides the foundation for the next generation of ultra-compact spectroscopic phase-modulated devices for optical imaging, sensing, and spectroscopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于高度集成的光子学和量子通信技术的快速发展以及高分辨率医学成像技术的最新进步,目前迫切需要小型化和可扩展的光学元件,以实现对不同物体的同时光聚焦和方向控制。光谱带。为了应对这些挑战,该项目增进了对在纳米尺度上结合多种功能的光学器件的理解。研究团队利用实验和计算方法来帮助开发新型材料和结构,这些材料和结构能够实现可控光聚焦响应,同时减少损耗并提高效率,用于下一代节能纳米光子器件,例如片上光谱仪、光学传感器和在多个光谱区域运行的小型成像系统。该项目通过一个充满活力的外展计划支持一名研究生,并鼓励本科生参与研究,旨在通过波士顿大学的暑期课程,在学术课程中引入光学科学和工程的基本概念,并与实际实验室演示和研究活动合作。该推广计划的一个重要组成部分是通过参与该项目吸引代表性不足的少数族裔从事光学工程职业。最后,外展活动涉及开发一个针对新兴超光子学领域的重点教学模块,该模块将作为波士顿大学光子学外展项目的一部分提供给学生(研究生和本科生)以及工业界和学术界的从业者。 主要目标该提案的目的是将元光学和衍射光学技术的有利方面结合起来,以设计、制造和实验表征高性能、超紧凑的新型衍射器件,其具有基于空间调制的相位分布高折射率透明材料和可扩展的多层制造。研究人员将特别关注两种密切相关的新型光子结构:(i)基于具有工程相位调制的消色差轴透镜的单元件超紧凑微型光谱仪,以及(ii)基于轴透镜的多光谱聚焦装置在选定的光谱带上实现辐射的同时聚焦。这些目标将通过严格的瑞利-索末菲衍射理论、器件级有限元法 (FEM) 数值设计、材料制造和光学器件的实验表征以及宽光谱范围内的集成成像和光谱功能的全面集成来实现。当在可见光和近红外 (NIR) 光谱范围内使用硅 (Si) 和二氧化钛 (TiO2) 透明电介质时,研究概念、方法和设计方法自然可以扩展到任何感兴趣的波长和电介质材料平台。拟议研究计划的智力价值依赖于开发新颖且更强大的途径,用于具有成本效益的小型化相位工程设备,这些设备对偏振不敏感,在大范围的入射角下工作,并结合了高效聚焦和除了光谱学之外,光栅响应还可以应用于多光谱光学检测、量子信息源和片上传感。该项目产生了更广泛的影响,因为它为用于光学成像、传感和光谱学的下一代超紧凑光谱相位调制设备奠定了基础。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse design of ultracompact multi-focal optical devices by diffractive neural networks
基于衍射神经网络的超紧凑多焦点光学器件逆向设计
  • DOI:
    10.1364/ol.460186
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Chen, Yuyao;Zhu, Yilin;Britton, Wesley A.;Dal Negro, Luca
  • 通讯作者:
    Dal Negro, Luca
Hyperuniform scalar random fields for lensless, multispectral imaging systems
无透镜多光谱成像系统的超均匀标量随机场
  • DOI:
    10.1364/ol.437936
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Chen, Yuyao;Britton, Wesley A.;Dal Negro, Luca
  • 通讯作者:
    Dal Negro, Luca
High-throughput speckle spectrometers based on multifractal scattering media
基于多重分形散射介质的高通量散斑光谱仪
  • DOI:
    10.1364/ome.511275
  • 发表时间:
    2024-03
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Kumar, Bhupesh;Zhu, Yilin;Dal Negro, Luca;Schulz, Sebastian A.
  • 通讯作者:
    Schulz, Sebastian A.
Inverse design of functional photonic patches by adjoint optimization coupled to the generalized Mie theory
结合广义米氏理论的伴随优化逆向设计功能光子贴片
  • DOI:
    10.1364/josab.491882
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhu, Yilin;Chen, Yuyao;Gorsky, Sean;Shubitidze, Tornike;Dal Negro, Luca
  • 通讯作者:
    Dal Negro, Luca
Design of ultracompact broadband focusing spectrometers based on diffractive optical networks
基于衍射光网络的超紧凑宽带聚焦光谱仪设计
  • DOI:
    10.1364/ol.475375
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Zhu, Yilin;Chen, Yuyao;Dal Negro, Luca
  • 通讯作者:
    Dal Negro, Luca
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Dal Negro其他文献

Field theory description of the non-perturbative optical nonlinearity of epsilon-near-zero media
ε近零介质非微扰光学非线性的场论描述
  • DOI:
    10.1063/5.0171708
  • 发表时间:
    2023-08-06
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Y. Tamashevich;Tornike Shubitidze;Luca Dal Negro;M. Ornigotti
  • 通讯作者:
    M. Ornigotti
Demonstration of laser action in a pseudo-random medium
演示激光在伪随机介质中的作用
  • DOI:
    10.1117/12.861551
  • 发表时间:
    2010-08-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin;S. Boriskina;H. Noh;M. Rooks;G. Solomon;Luca Dal Negro;H. Cao
  • 通讯作者:
    H. Cao

Luca Dal Negro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Dal Negro', 18)}}的其他基金

Collaborative Research: Engineering fractional photon transport for random laser devices
合作研究:随机激光设备的分数光子传输工程
  • 批准号:
    2110204
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Tunable Si-compatible Nonlinear Materials for Active Metaphotonics
用于主动超光子学的可调谐硅兼容非线性材料
  • 批准号:
    1709704
  • 财政年份:
    2017
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
EAGER: Enhanced Solar Energy Conversion by Ultra-slow Photon Sub-diffusion in Aperiodic Media
EAGER:通过非周期介质中的超慢光子子扩散增强太阳能转换
  • 批准号:
    1643118
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
EAGER: Engineering light-matter interaction via topological phase transitions in photonic heterostructures with aperiodic order
EAGER:通过非周期性光子异质结构中的拓扑相变来工程光与物质的相互作用
  • 批准号:
    1541678
  • 财政年份:
    2015
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CAREER: Combined Light and Carrier Localization in High-refractive Index Silicon Nanocrystal Structures: a Novel Approach for Si-based Lasers
职业:高折射率硅纳米晶体结构中的组合光和载流子定位:硅基激光器的新方法
  • 批准号:
    0846651
  • 财政年份:
    2009
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant

相似国自然基金

热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
  • 批准号:
    32360917
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
  • 批准号:
    42371164
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高层钢结构建模-优化-深化的跨阶段智能设计方法
  • 批准号:
    52308142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低碳环境下考虑阶段间运输混合流水车间成组调度的协同智能优化方法
  • 批准号:
    72301026
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
马尾松和粘盖乳牛肝菌预共生阶段互作机制研究
  • 批准号:
    32360372
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of a prototype clinical theranostic platform combining Magnetic Particle Imaging (MPI) and Magnetic Fluid Hyperthermia (MFH) for the treatment of brain tumors
开发结合磁粒子成像(MPI)和磁流体热疗(MFH)的原型临床治疗平台,用于治疗脑肿瘤
  • 批准号:
    10761630
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
Targeting apoptotic cells to enhance radiotherapy
靶向凋亡细胞以增强放射治疗
  • 批准号:
    10538071
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
Project 2: ALDH3A1 Activation for Radioprotection of Salivary Glands and Other Head and Neck Epithelial Tissues
项目2:ALDH3A1激活对唾液腺和其他头颈上皮组织的辐射防护
  • 批准号:
    10707889
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
Molecular Characterization Trial
分子表征试验
  • 批准号:
    10526302
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
A Multifaceted Radiomics Model to Predict Cervical Lymph Node Metastasis for Involved Nodal Radiation Therapy
预测涉及淋巴结放射治疗的颈部淋巴结转移的多方面放射组学模型
  • 批准号:
    10654048
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了