EAGER: Engineering light-matter interaction via topological phase transitions in photonic heterostructures with aperiodic order

EAGER:通过非周期性光子异质结构中的拓扑相变来工程光与物质的相互作用

基本信息

  • 批准号:
    1541678
  • 负责人:
  • 金额:
    $ 11.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

Nontechnical description: Enhancing light-matter interaction processes such as the emission and absorption of photons using engineered optical nanostructures is a key feature to sustain the continuing development of a number of active devices that include light sources, modulators and optical sensors. These devices are the cornerstones of our present information age, where highly integrated semiconductor chips deliver and manipulate optical and electrical signals at ever increasing rates, directly or indirectly affecting every aspect of our society. In this project we propose a novel approach to boost light-matter interaction and tailor the fundamental transport processes that govern the photon dynamics in optical nanostructures. In particular we plan to engineer light-emitting photonic nanostructures with unprecedented optical properties by leveraging the interdisciplinary physics of the recently discovered topological phases in electronic systems. An example of such fascinating structures is provided by topological insulators, which are materials that behave as electrical insulators in their interior but can robustly conduct electricity on their surface irrespectively of perturbations and disorder. Our project explores photonic analogues of such systems extended to non-periodic geometries that support localized field solutions with greatly enhanced light-matter coupling and give rise to novel photon transport properties. The successful development of our research program may lead to a number of breakthroughs in the technologically strategic area of active silicon photonics, potentially resulting in transformative device applications to optical signal generation, propagation, processing and energy harvesting on the cost-effective silicon chip. The science of this project also offers exciting opportunities for the development of a vibrant educational and outreach plan on undergraduate and graduate levels. Technical description: Our proposal combines interdisciplinary perspectives on topological theory of deterministic aperiodic systems, device-level electromagnetic modeling of complex photonic structures, materials and device fabrication with spectroscopic characterization of light-emitting nanostructures based on silicon technology. The proposal builds on recent theoretical advancements that established a surprising connection between the rich physics of two-dimensional topological insulators and one-dimensional photonic quasi-crystals. In the project we will extend this vision to more general aperiodic systems and we will engineer topological phase transitions by smoothly connecting active waveguide structures with inequivalent topologies. Such devices will be fabricated using the widespread silicon technology that guarantees high-volume and low-cost production. Our goals will be achieved by first fabricating low-loss silicon compatible materials, such as transparent conductive oxides and nitrides doped with light emitting rare earth ions and Si quantum dots. We will then fabricate sub-wavelength slot waveguide gratings structures with aperiodic refractive index modulations that will controllably implement different types of topological transitions. The theoretical foundation to understand optical waves in such graded aperiodic systems will be developed in close partnership with experimental characterization of materials and devices. In particular, rigorous electromagnetic theory of and device-level modeling of the fabricated structures will be performed. The optical emission and transport properties of fabricated samples will be investigated by steady-state and time-resolved fluorescence spectroscopy in combination with structural characterization of materials. The proposed work paves the way to a novel class of photonic materials that leverage topological effects and aperiodic order to manipulate photon transport and light localization phenomena in active nanostructures. Moreover, this research can result in the discovery of novel surface phenomena in nanophotonics and will enable the development of new strategies to boost light-matter interaction in aperiodic systems with emission characteristics intrinsically determined by the nature of their topological invariants.
非技术描述:使用工程光学纳米结构增强光与物质的相互作用过程,例如光子的发射和吸收,是维持包括光源、调制器和光学传感器在内的许多有源器件持续发展的关键特征。这些设备是当今信息时代的基石,高度集成的半导体芯片以不断增长的速度传输和操纵光信号和电信号,直接或间接影响着我们社会的各个方面。在这个项目中,我们提出了一种新方法来增强光与物质的相互作用,并定制控制光学纳米结构中光子动力学的基本传输过程。特别是,我们计划利用最近在电子系统中发现的拓扑相的跨学科物理学来设计具有前所未有的光学特性的发光光子纳米结构。拓扑绝缘体就是这种令人着迷的结构的一个例子,拓扑绝缘体是一种内部表现为电绝缘体的材料,但无论扰动和无序如何,都可以在其表面上稳健地导电。我们的项目探索了此类系统的光子类似物,扩展到非周期性几何形状,支持局部场解决方案,大大增强了光-物质耦合,并产生新颖的光子传输特性。我们研究项目的成功开发可能会在有源硅光子学的技术战略领域带来一系列突破,从而有可能在具有成本效益的硅芯片上实现光信号生成、传播、处理和能量收集的变革性设备应用。该项目的科学性还为在本科生和研究生层面制定充满活力的教育和推广计划提供了令人兴奋的机会。技术描述:我们的提案将确定性非周期系统拓扑理论、复杂光子结构的器件级电磁建模、材料和器件制造与基于硅技术的发光纳米结构的光谱表征相结合。该提案建立在最近的理论进展之上,在二维拓扑绝缘体和一维光子准晶体的丰富物理之间建立了令人惊讶的联系。在该项目中,我们将把这一愿景扩展到更一般的非周期系统,并且我们将通过将有源波导结构与不等拓扑平滑连接来设计拓扑相变。此类设备将使用广泛使用的硅技术来制造,以保证大批量和低成本的生产。我们的目标将通过首先制造低损耗硅兼容材料来实现,例如掺杂发光稀土离子和硅量子点的透明导电氧化物和氮化物。然后,我们将制造具有非周期性折射率调制的亚波长缝隙波导光栅结构,该结构将可控地实现不同类型的拓扑转变。理解此类渐变非周期系统中光波的理论基础将与材料和设备的实验表征密切合作。特别是,将对所制造的结构进行严格的电磁理论和器件级建模。所制造样品的光学发射和传输特性将通过稳态和时间分辨荧光光谱结合材料的结构表征进行研究。所提出的工作为一类新型光子材料铺平了道路,该材料利用拓扑效应和非周期顺序来操纵活性纳米结构中的光子传输和光定位现象。此外,这项研究可以发现纳米光子学中新颖的表面现象,并将有助于开发新策略来促进非周期系统中的光与物质相互作用,其发射特性本质上是由其拓扑不变量的性质决定的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Dal Negro其他文献

Field theory description of the non-perturbative optical nonlinearity of epsilon-near-zero media
ε近零介质非微扰光学非线性的场论描述
  • DOI:
    10.1063/5.0171708
  • 发表时间:
    2023-08-06
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Y. Tamashevich;Tornike Shubitidze;Luca Dal Negro;M. Ornigotti
  • 通讯作者:
    M. Ornigotti
Demonstration of laser action in a pseudo-random medium
演示激光在伪随机介质中的作用
  • DOI:
    10.1117/12.861551
  • 发表时间:
    2010-08-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin;S. Boriskina;H. Noh;M. Rooks;G. Solomon;Luca Dal Negro;H. Cao
  • 通讯作者:
    H. Cao

Luca Dal Negro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Dal Negro', 18)}}的其他基金

Collaborative Research: Engineering fractional photon transport for random laser devices
合作研究:随机激光设备的分数光子传输工程
  • 批准号:
    2110204
  • 财政年份:
    2021
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Standard Grant
Compact Phase-Modulated Photonic Structures for On-Chip Multiband Spectroscopy
用于片上多波段光谱的紧凑型相位调制光子结构
  • 批准号:
    2015700
  • 财政年份:
    2020
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Standard Grant
Compact Phase-Modulated Photonic Structures for On-Chip Multiband Spectroscopy
用于片上多波段光谱的紧凑型相位调制光子结构
  • 批准号:
    2015700
  • 财政年份:
    2020
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Standard Grant
Tunable Si-compatible Nonlinear Materials for Active Metaphotonics
用于主动超光子学的可调谐硅兼容非线性材料
  • 批准号:
    1709704
  • 财政年份:
    2017
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Standard Grant
EAGER: Enhanced Solar Energy Conversion by Ultra-slow Photon Sub-diffusion in Aperiodic Media
EAGER:通过非周期介质中的超慢光子子扩散增强太阳能转换
  • 批准号:
    1643118
  • 财政年份:
    2016
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Standard Grant
CAREER: Combined Light and Carrier Localization in High-refractive Index Silicon Nanocrystal Structures: a Novel Approach for Si-based Lasers
职业:高折射率硅纳米晶体结构中的组合光和载流子定位:硅基激光器的新方法
  • 批准号:
    0846651
  • 财政年份:
    2009
  • 资助金额:
    $ 11.76万
  • 项目类别:
    Standard Grant

相似国自然基金

基于中间带工程的非铅锑基钙钛矿薄膜制备及室内光伏性能研究
  • 批准号:
    12304043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
晶面诱导工程同步调控光生电荷分离与利用的水污染控制新技术
  • 批准号:
    52300069
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米抗体工程化细菌外膜囊泡联合光免疫制剂激活cGAS-STING通路诱导大肠癌抗肿瘤免疫的机制研究
  • 批准号:
    82373775
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于梯度带隙工程的无机钙钛矿太阳电池制备及其光伏性能研究
  • 批准号:
    62364001
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目
光-热触发型基因工程菌增敏铁死亡协同强化肿瘤免疫治疗的研究
  • 批准号:
    82303779
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Biologically-engineered Transcatheter Vein Valve: Design Optimization and Preclinical Testing
生物工程经导管静脉瓣膜:设计优化和临床前测试
  • 批准号:
    10594865
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
  • 批准号:
    10515612
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
Phage-inspired engineering and evolution
噬菌体启发的工程和进化
  • 批准号:
    10552294
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
Brain-wide mapping of neuronal inhibition by novel inverse activity markers
通过新型反向活动标记物绘制全脑神经元抑制图谱
  • 批准号:
    10639977
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
Development and characterization of an inducible model for myocilin POAG
肌纤蛋白 POAG 诱导模型的开发和表征
  • 批准号:
    10661911
  • 财政年份:
    2023
  • 资助金额:
    $ 11.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了