RAPID: Viral Particle Disrupting and Sequestering Polymer Materials applied to Coronaviruses
RAPID:用于冠状病毒的病毒颗粒破坏和隔离聚合物材料
基本信息
- 批准号:2030567
- 负责人:
- 金额:$ 18.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is an NSF RAPID award in response to the 2020 CARES Act and is managed by the Polymers Program in the Division of Materials Research of the Directorate for Mathematical and Physical Sciences.PART 1: NON-TECHNICAL SUMMARYSince the first cases of coronavirus disease 2019 (COVID-19) appeared in late 2019, the disease has infected millions globally. The virus responsible for COVID-19 can stay active, capable of causing infections, on various surfaces for days, during which time indirect contact transmission could occur. Coronaviruses contain both a surface envelope of lipids and surface presented proteins which resemble spikes. Both of these features of the virus can be used to trap and destroy the viruses within synthetic materials. Synthetic polymer materials capable of inactivating and sequestering the virus causing COVID-19 will be developed in this project. These materials will form tough structures, with the materials containing synthetic and natural groups to both disrupt the lipid molecules on the surface of the virus and to bind and trap the coronavirus spike proteins. The polymers will form a tough network, ensuring the material performs for an extended period of time. This research involves design and synthesis of polymers as well as characterization and study of their mechanical properties and focuses on developing materials that could be adapted or coated onto existing high-touch surfaces. Additionally, the project will create publicly accessible virtual presentations and content on how polymer materials are critical for the health care industry and innovations in materials for biomedical applications. With the development of materials with excellent durability and robust ability to disrupt and trap the coronavirus, a reduction in COVID-19 infection by mitigating the indirect contact transmission mechanism is possible.PART 2: TECHNICAL SUMMARYSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibits active lifetimes of over 24 hours. This enables transmission to occur hours or days after a virus containing droplet is deposited from an infected individual. Materials that destroy the virus and sequester the virus to the surface could reduce the transmission rate of coronavirus disease 2019 (COVID-19). This project will develop virus trapping and disrupting tough networks which could be used to coat commonly encountered surfaces. The polymer materials will disrupt the lipid envelope of SARS-CoV-2 viral particles and bind the spike on the surface of SARS-CoV-2 with high affinity. Both purely synthetic materials as well as hybrid peptide/synthetic materials approaches will be investigated. The polymers will include tough network forming functionalities as well as peptide or synthetic polymers for both lipid envelope disruption and spike protein binding. The scientific focus of the project is to determine how a polymer material's microstructure and functionality impacts its ability to: form tough and mechanically robust networks; disrupt viral lipid envelopes; and immobilize SARS-CoV-2 through the surface spike proteins. A library of polymer materials containing distinct crosslink densities and macromolecular architectures will be used to determine how polymer structure impacts a material's mechanical property, lipid particle rupturing capability, and ability to bind to SARS-CoV-2 spike proteins. This will guide the design of materials for optimal mechanical performance and coronavirus disrupting capabilities, and will facilitate the design of surface coatings that can hinder indirect contact transmission with long lifetimes of the structures. To remotely engage with the public on the importance of polymer materials, a series of monthly YouTube videos will be developed to convey how polymer materials are critical to health and safety, highlighting developments in materials for healthcare and biomedical applications.This grant is being awarded using funds made available by the Coronavirus Aid, Relief, and Economic Security (CARES) Act supplement allocated to MPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是对《 2020 Cares Act》的响应NSF快速奖,由聚合物计划在数学和物理科学局的材料研究部中进行管理。第1部分:非技术摘要2019年下半年冠状病毒病2019年冠状病毒疾病(VoVID-19),该病在2019年底出现,疾病已被疾病感染了数以百万富翁。负责COVID-19的病毒可以保持活跃,能够在各种表面上引起感染数天,在此期间可能发生间接接触传播。冠状病毒既包含脂质的表面包膜,又包含表面呈现出类似峰值的蛋白质。该病毒的这两个特征都可以用来捕获和破坏合成材料中的病毒。该项目将开发能够灭活和隔离病毒的合成聚合物材料。这些材料将形成坚固的结构,其中包含合成基团和天然基团的材料既破坏病毒表面上的脂质分子,又可以结合并捕获冠状病毒尖峰蛋白。聚合物将形成一个坚固的网络,以确保材料长时间执行。 这项研究涉及聚合物的设计和合成以及对其机械性能的表征和研究,并着重于开发可以适应或涂层到现有高触觉表面上的材料。此外,该项目将创建有关聚合物材料如何对医疗保健行业以及生物医学应用材料创新至关重要的公开访问的虚拟演示文稿和内容。通过开发具有出色耐用性和可破坏冠状病毒的材料,可以通过缓解间接接触传播机制来减少Covid-19感染。第2部分:技术摘要急性呼吸综合征冠状病毒2(SARS-COV)表现出超过24小时24小时的活跃寿命。这使得传播能够在感染者沉积含有液滴的病毒后数小时或几天。破坏病毒并将病毒隔离到表面的材料可以降低2019年冠状病毒病的传播率(Covid-19)。该项目将开发病毒诱捕和破坏艰难的网络,这些网络可用于覆盖通常遇到的表面。聚合物材料会破坏SARS-COV-2病毒颗粒的脂质包膜,并以高亲和力结合SARS-COV-2表面上的尖峰。将研究纯合成材料以及杂化肽/合成材料方法。这些聚合物将包括脂质包膜破坏和尖峰蛋白结合的固定网络形成功能以及肽或合成聚合物。该项目的科学重点是确定聚合物材料的微观结构和功能如何影响其能力:形成坚固而机械的网络;破坏病毒脂质信封;并通过表面尖峰蛋白固定SARS-COV-2。将使用包含不同交联密度和大分子结构的聚合物材料库来确定聚合物结构如何影响材料的机械性能,脂质颗粒破裂能力以及与SARS-COV-2尖峰蛋白结合的能力。这将指导材料的设计,以最佳的机械性能和冠状病毒破坏功能,并促进表面涂层的设计,这些材料可以阻止间接接触的结构寿命长。为了与公众讨论聚合物材料的重要性,将开发一系列每月的YouTube视频,以传达聚合物材料如何对健康和安全至关重要,强调了医疗保健和生物医学应用材料的发展。并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SARS‐CoV ‐2 spike protein capture by peptide functionalized networks
- DOI:10.1002/pol.20220539
- 发表时间:2022-11
- 期刊:
- 影响因子:3.4
- 作者:M. Rahman;Chamoni W. H. Rajawasam;Nethmi De Alwis Watuthanthrige;J. L. Sparks;R. Page;Dominik Konkolewicz-Dominik-Konkol
- 通讯作者:M. Rahman;Chamoni W. H. Rajawasam;Nethmi De Alwis Watuthanthrige;J. L. Sparks;R. Page;Dominik Konkolewicz-Dominik-Konkol
Network polymers incorporating lipid-bilayer disrupting polymers: towards antiviral functionality
结合脂质双层破坏聚合物的网络聚合物:实现抗病毒功能
- DOI:10.1039/d2py00602b
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Burridge, Kevin M.;Rahman, Monica S.;De Alwis Watuthanthrige, Nethmi;Gordon, Emma;Shah, Muhammad Zeeshan;Chandrarathne, Bhagya Madhushani;Lorigan, Gary A.;Page, Richard C.;Konkolewicz, Dominik
- 通讯作者:Konkolewicz, Dominik
Simple polymerization through oxygen at reduced volumes using oil and water
- DOI:10.1002/pol.20210386
- 发表时间:2021-06-21
- 期刊:
- 影响因子:3.4
- 作者:Burridge, Kevin M.;Watuthanthrige, Nethmi De Alwis;Konkolewicz, Dominik
- 通讯作者:Konkolewicz, Dominik
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominik Konkolewicz其他文献
Polymer Conjugation to Enhance Cellulase Activity and Preserve Thermal and Functional Stability.
聚合物缀合可增强纤维素酶活性并保持热稳定性和功能稳定性。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.7
- 作者:
Thaiesha A Wright;Melissa Lucius Dougherty;Benjamin Schmitz;Kevin M. Burridge;Katherine Makaroff;Jamie M Stewart;Henry Fischesser;Jerry T Shepherd;J. Berberich;Dominik Konkolewicz;R. Page - 通讯作者:
R. Page
Engineering a Tunnel to a More Versatile Lipoic Acid Ligase
设计一个更通用的硫辛酸连接酶隧道
- DOI:
10.1096/fasebj.31.1_supplement.922.10 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Benjamin Schmitz;Dominik Konkolewicz;Richard C. Page - 通讯作者:
Richard C. Page
Toward a more general solution to the band-broadening problem in size separation of polymers
寻求聚合物尺寸分离中谱带展宽问题的更通用解决方案
- DOI:
10.1021/ma062973a - 发表时间:
2007 - 期刊:
- 影响因子:5.5
- 作者:
Dominik Konkolewicz;James W. Taylor;P. Castignolles;Angus A Gray;R. Gilbert - 通讯作者:
R. Gilbert
Low ppm CuBr-Triggered Atom Transfer Radical Polymerization under Mild Conditions
温和条件下低 ppm CuBr 引发的原子转移自由基聚合
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Richard Whitfield;Kostas Parkatzidis;Kate G. E. Bradford;N. Truong;Dominik Konkolewicz;Athina Anastasaki - 通讯作者:
Athina Anastasaki
Tuning polymer properties through competitive processes
通过竞争性工艺调整聚合物性能
- DOI:
10.1021/bk-2012-1100.ch010 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dominik Konkolewicz;Dagmar R. D’hooge;K. Sosnowski;R. Szymanski;M. Reyniers;G. Marin;K. Matyjaszewski - 通讯作者:
K. Matyjaszewski
Dominik Konkolewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominik Konkolewicz', 18)}}的其他基金
CAS: Responsive Macromolecules by Wavelength Controlled Vinyl Ketone Photopolymerization and Photodegradation
CAS:波长控制乙烯基酮光聚合和光降解响应大分子
- 批准号:
2203727 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Standard Grant
2019 Chemistry Early Career Investigator Workshop
2019年化学早期职业研究员研讨会
- 批准号:
1912099 - 财政年份:2018
- 资助金额:
$ 18.18万 - 项目类别:
Standard Grant
CAREER: Dynamic Polymer Materials with Advanced Polymer Architecture and Carbon Nanotube Reinforcements
职业:具有先进聚合物结构和碳纳米管增强材料的动态聚合物材料
- 批准号:
1749730 - 财政年份:2018
- 资助金额:
$ 18.18万 - 项目类别:
Continuing Grant
相似国自然基金
艾叶活性成分Artemvulactone E靶向MAMDC2抑制STING/NF-κB通路抗疱疹病毒性脑炎的机制研究
- 批准号:82373917
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
免扩增核酸定量检测技术研究及其在发热儿童细菌与病毒性感染快速鉴别中的应用
- 批准号:22304040
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
核苷类抗病毒药物嵌合型核酸纳米载体的构筑及其抗病毒性能研究
- 批准号:52303174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Calpain通过MYC-DHODH促进铁死亡介导早期心肌损伤在病毒性心肌炎中的作用及机制研究
- 批准号:82370361
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨溶酶体途径的纳米气泡靶向运载RNA调控巨噬细胞极化在病毒性心肌炎的作用及机制研究
- 批准号:82300571
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a handheld rapid air sensing system to monitor and quantify SARS-CoV-2 in aerosols in real-time
开发手持式快速空气传感系统,实时监测和量化气溶胶中的 SARS-CoV-2
- 批准号:
10854070 - 财政年份:2023
- 资助金额:
$ 18.18万 - 项目类别:
High-Throughput, Rapid, and Epitope-Specific Quantification of Neutralizing Antibodies Using Digital Nanoparticle Sensors
使用数字纳米颗粒传感器对中和抗体进行高通量、快速和表位特异性定量
- 批准号:
10432809 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
Development of Optofluidic Resonators for Filoviral Detection
用于丝状病毒检测的光流控谐振器的开发
- 批准号:
10506889 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别:
High-Throughput, Rapid, and Epitope-Specific Quantification of Neutralizing Antibodies Using Digital Nanoparticle Sensors
使用数字纳米颗粒传感器对中和抗体进行高通量、快速和表位特异性定量
- 批准号:
10611462 - 财政年份:2022
- 资助金额:
$ 18.18万 - 项目类别: