CAREER: Dynamic Polymer Materials with Advanced Polymer Architecture and Carbon Nanotube Reinforcements
职业:具有先进聚合物结构和碳纳米管增强材料的动态聚合物材料
基本信息
- 批准号:1749730
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYThis project aims to develop polymeric materials with enhanced mechanical properties and electrical conductivity through judicious choice of molecular structure and nanoscale reinforcement. Introducing "dynamic bonds" (i.e., chemical bonds that can be exchanged between different groups) into a polymeric material can lead to self-healing properties and enhanced stability in case of external damage to the material. However, this can also lead to permanent changes in shape when external forces are applied, which could limit utility in applications. The polymers developed in this proposal will incorporate different types of dynamic bonds into the same material to enable the combination of self-healable properties with long-term stability. There is a need to understand how the underlying polymer structure impacts the properties of dynamically cross-linked polymers. The structure of the underlying polymer will be tuned for this purpose and additional reinforcement will be enabled by incorporation of carbon nanotubes, which will improve mechanical properties and electrical conductivity. This research is anticipated to produce materials with enhanced lifetime and reprocessability due to the healing properties enabled by dynamic bonding. This will enable the next generation of polymeric materials to have extended useful lifetime, with reduced replacement costs, improved performance against mechanical challenges, and enhanced conductivity. The material synthesis strategies developed in this research could be translated to additive manufacturing enabling a range of tailor-made materials with complex structures. This project will also include outreach activities that place dynamically cross-linked polymers in the hands of K-12 students and develop continuing education activities for K-12 teachers. This project will also develop educational tools to promote critical thinking and involvement in classrooms to train the next generation of scientists and propel them to productive careers in science. Further, this project will engage students of diverse backgrounds in graduate and undergraduate research, to foster participation in STEM fields from populations that are traditionally underrepresented.PART 2: TECHNICAL SUMMARY This research will develop well-defined polymers containing dual-dynamic crosslinking, where both a non-covalent linker that exchanges rapidly and a dynamic covalent linker that exchanges under external stimulus are used in one polymer material. This will create materials that combine the toughness, malleability, reprocessability and self-healing character imparted by dynamic bonding while retaining mechanical stability and resistance to creep of traditional thermosets. The research will lead to new materials by combining dual dynamic crosslinking with polymers of controlled structure and new strategies for bonding carbon nanotube reinforcements to the matrix. Polymers will be synthesized with control over chain-length, placement of crosslinkers along the chain, and density of crosslinkers. Diels-Alder chemistry will be used to dynamically bond the carbon nanotube reinforcements. Advanced structures such as interpenetrating networks and segmented polymers will be introduced to improve mechanical properties. Performance of each material will be evaluated through a number of mechanical and electrical tests, and lead to correlation of macroscopic properties with the underlying polymer structure. Specific objectives of this research are:1. Create dual dynamic single and interpenetrating networks with precise control over chain length and crosslinker placement along the polymer backbone.2. Reinforce dual dynamically crosslinked polymers using dynamic bonds between carbon nanotubes and the matrix.3. Make interpenetrating network and single network carbon nanotube composite materials with precise control over polymer microstructure.4. Elucidate structure-property correlations between the polymer architecture and microstructure and the mechanical and electrical properties of the materials.Educational activities focus on three key areas: 1) Outreach to secondary school teachers and students; 2) Development of new pedagogies; 3) Increasing diversity in STEM. The first area will include outreach to K-12 students on polymeric materials with non-covalent and dynamic covalent crosslinkers, as well as continuing education activities for teachers. The second area will focus on tools to engage students to reflect on their own learning, and develop connections between experiments and classroom activities. The third area will increase involvement of students from traditionally underrepresented groups in STEM studies and research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 1 部分:非技术摘要该项目旨在通过明智地选择分子结构和纳米级增强材料来开发具有增强机械性能和导电性的聚合物材料。将“动态键”(即可以在不同基团之间交换的化学键)引入聚合物材料中可以带来自愈性能,并在材料受到外部损坏时增强稳定性。然而,当施加外力时,这也会导致形状发生永久性变化,从而限制应用中的实用性。该提案中开发的聚合物将把不同类型的动态键合并到同一材料中,以实现自修复特性与长期稳定性的结合。需要了解底层聚合物结构如何影响动态交联聚合物的性能。为此目的,将调整底层聚合物的结构,并通过加入碳纳米管来实现额外的增强,这将提高机械性能和导电性。 由于动态粘合具有愈合特性,预计这项研究将生产出具有更长使用寿命和可再加工性的材料。这将使下一代聚合物材料能够延长使用寿命,降低更换成本,提高应对机械挑战的性能,并增强导电性。这项研究中开发的材料合成策略可以转化为增材制造,从而实现一系列具有复杂结构的定制材料。该项目还将包括外展活动,将动态交联聚合物交给 K-12 学生,并为 K-12 教师开展继续教育活动。该项目还将开发教育工具,以促进批判性思维和课堂参与,从而培训下一代科学家并推动他们在科学领域取得富有成效的职业生涯。此外,该项目将吸引不同背景的学生参与研究生和本科生研究,以促进传统上代表性不足的人群参与 STEM 领域。 第 2 部分:技术摘要 本研究将开发含有双动态交联的明确聚合物,其中在一种聚合物材料中使用快速交换的非共价连接体和在外部刺激下交换的动态共价连接体。这将创造出兼具动态粘合赋予的韧性、延展性、可再加工性和自修复特性的材料,同时保留传统热固性材料的机械稳定性和抗蠕变性。该研究将通过将双动态交联与受控结构的聚合物相结合以及将碳纳米管增强材料粘合到基体上的新策略来开发新材料。 通过控制链长、交联剂沿链的位置以及交联剂的密度来合成聚合物。 Diels-Alder 化学将用于动态粘合碳纳米管增强材料。将引入互穿网络和分段聚合物等先进结构来提高机械性能。每种材料的性能将通过大量机械和电气测试进行评估,并得出宏观性能与底层聚合物结构的相关性。本研究的具体目标是: 1.创建双动态单网络和互穿网络,精确控制链长和交联剂沿聚合物主链的放置。2.利用碳纳米管和基体之间的动态键增强双动态交联聚合物。3.精确控制聚合物微观结构,制备互穿网络和单网络碳纳米管复合材料。4.阐明聚合物结构和微观结构以及材料的机械和电气性能之间的结构-性能相关性。教育活动集中在三个关键领域:1)向中学教师和学生推广; 2)开发新的教学法; 3)增加STEM的多样性。第一个领域将包括向 K-12 学生宣传非共价和动态共价交联剂的聚合物材料,以及教师的继续教育活动。第二个领域将重点关注让学生反思自己的学习并建立实验和课堂活动之间联系的工具。第三个领域将增加传统上代表性不足群体的学生对 STEM 学习和研究的参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning mechanical behavior of polymer materials via multi-arm crosslinked network architectures
- DOI:10.1103/physrevmaterials.6.125602
- 发表时间:2022-12
- 期刊:
- 影响因子:3.4
- 作者:Peter J. Hayes;Dominik Konkolewicz;Mehdi B. Zanjani
- 通讯作者:Peter J. Hayes;Dominik Konkolewicz;Mehdi B. Zanjani
Designing Dynamic Materials from Dynamic Bonds to Macromolecular Architecture
- DOI:10.1016/j.trechm.2020.12.005
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Nethmi De Alwis Watuthanthrige;Progyateg Chakma;Dominik Konkolewicz
- 通讯作者:Nethmi De Alwis Watuthanthrige;Progyateg Chakma;Dominik Konkolewicz
Using Experimental Spectroscopic Data to Guide and Validate Mechanisms in Catalyzed Aldol Reactions
使用实验光谱数据指导和验证催化羟醛反应的机制
- DOI:10.1021/acs.jchemed.2c00185
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Weaver, Kyle;Reeves, Jennifer A.;Konkolewicz, Dominik
- 通讯作者:Konkolewicz, Dominik
Carbon nanotube enhanced dynamic polymeric materials through macromolecular engineering
- DOI:10.1039/d0ma00143k
- 发表时间:2020-08
- 期刊:
- 影响因子:5
- 作者:Erika B. Stopler;O. Dodo;Alexander C. Hull;Kyle A. Weaver;Progyateg Chakma;R. Edelmann;Logan Ranly;Mehdi B. Zanjani;Z. Ye;Dominik Konkolewicz
- 通讯作者:Erika B. Stopler;O. Dodo;Alexander C. Hull;Kyle A. Weaver;Progyateg Chakma;R. Edelmann;Logan Ranly;Mehdi B. Zanjani;Z. Ye;Dominik Konkolewicz
Accelerating dynamic exchange and self-healing using mechanical forces in crosslinked polymers
- DOI:10.1039/c9mh01938c
- 发表时间:2020-06
- 期刊:
- 影响因子:13.3
- 作者:Nethmi De Alwis Watuthanthrige;Ballal Ahammed;Madison T. Dolan;Qinghua Fang;Jian Wu;J. L. Sparks;Mehdi B. Zanjani;Dominik Konkolewicz;Z. Ye
- 通讯作者:Nethmi De Alwis Watuthanthrige;Ballal Ahammed;Madison T. Dolan;Qinghua Fang;Jian Wu;J. L. Sparks;Mehdi B. Zanjani;Dominik Konkolewicz;Z. Ye
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominik Konkolewicz其他文献
Engineering a Tunnel to a More Versatile Lipoic Acid Ligase
设计一个更通用的硫辛酸连接酶隧道
- DOI:
10.1096/fasebj.31.1_supplement.922.10 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Benjamin Schmitz;Dominik Konkolewicz;Richard C. Page - 通讯作者:
Richard C. Page
Polymer Conjugation to Enhance Cellulase Activity and Preserve Thermal and Functional Stability.
聚合物缀合可增强纤维素酶活性并保持热稳定性和功能稳定性。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.7
- 作者:
Thaiesha A Wright;Melissa Lucius Dougherty;Benjamin Schmitz;Kevin M. Burridge;Katherine Makaroff;Jamie M Stewart;Henry Fischesser;Jerry T Shepherd;J. Berberich;Dominik Konkolewicz;R. Page - 通讯作者:
R. Page
Toward a more general solution to the band-broadening problem in size separation of polymers
寻求聚合物尺寸分离中谱带展宽问题的更通用解决方案
- DOI:
10.1021/ma062973a - 发表时间:
2007 - 期刊:
- 影响因子:5.5
- 作者:
Dominik Konkolewicz;James W. Taylor;P. Castignolles;Angus A Gray;R. Gilbert - 通讯作者:
R. Gilbert
Low ppm CuBr-Triggered Atom Transfer Radical Polymerization under Mild Conditions
温和条件下低 ppm CuBr 引发的原子转移自由基聚合
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Richard Whitfield;Kostas Parkatzidis;Kate G. E. Bradford;N. Truong;Dominik Konkolewicz;Athina Anastasaki - 通讯作者:
Athina Anastasaki
Tuning polymer properties through competitive processes
通过竞争性工艺调整聚合物性能
- DOI:
10.1021/bk-2012-1100.ch010 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dominik Konkolewicz;Dagmar R. D’hooge;K. Sosnowski;R. Szymanski;M. Reyniers;G. Marin;K. Matyjaszewski - 通讯作者:
K. Matyjaszewski
Dominik Konkolewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominik Konkolewicz', 18)}}的其他基金
CAS: Responsive Macromolecules by Wavelength Controlled Vinyl Ketone Photopolymerization and Photodegradation
CAS:波长控制乙烯基酮光聚合和光降解响应大分子
- 批准号:
2203727 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RAPID: Viral Particle Disrupting and Sequestering Polymer Materials applied to Coronaviruses
RAPID:用于冠状病毒的病毒颗粒破坏和隔离聚合物材料
- 批准号:
2030567 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
2019 Chemistry Early Career Investigator Workshop
2019年化学早期职业研究员研讨会
- 批准号:
1912099 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
4D打印记忆聚合物支架的动态机械信号介导的Cav-1/YAP轴调控骨免疫促进颌骨再生的机制研究
- 批准号:82371006
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
通过压力对多孔聚合物泡沫吸波/导热性能的动态调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
动态键杂化-纤维束增韧的仿生聚合物设计及高可靠性柔性电子皮肤构筑
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“相锁定”策略的动态超分子聚合物电解质设计与界面作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于动态配位多重刺激响应性的金属/聚合物杂化材料的可控3D自成形
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
- 批准号:
2342272 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Characterization of dynamic heterogeneity in polymer ultrathin film systems and investigation of the origin of the decoupling in dynamics
聚合物超薄膜系统动态异质性的表征及动力学解耦起源的研究
- 批准号:
23K04853 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental and applied research on dynamic polymer brush system floating on water with high-order responsiveness
高阶响应漂浮于水面的动态聚合物刷系统基础与应用研究
- 批准号:
22KJ0790 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Room-temperature self-healing glassy polymer
室温自修复玻璃状聚合物
- 批准号:
22KJ0971 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows