CAREER: Dynamic Polymer Materials with Advanced Polymer Architecture and Carbon Nanotube Reinforcements
职业:具有先进聚合物结构和碳纳米管增强材料的动态聚合物材料
基本信息
- 批准号:1749730
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PART 1: NON-TECHNICAL SUMMARYThis project aims to develop polymeric materials with enhanced mechanical properties and electrical conductivity through judicious choice of molecular structure and nanoscale reinforcement. Introducing "dynamic bonds" (i.e., chemical bonds that can be exchanged between different groups) into a polymeric material can lead to self-healing properties and enhanced stability in case of external damage to the material. However, this can also lead to permanent changes in shape when external forces are applied, which could limit utility in applications. The polymers developed in this proposal will incorporate different types of dynamic bonds into the same material to enable the combination of self-healable properties with long-term stability. There is a need to understand how the underlying polymer structure impacts the properties of dynamically cross-linked polymers. The structure of the underlying polymer will be tuned for this purpose and additional reinforcement will be enabled by incorporation of carbon nanotubes, which will improve mechanical properties and electrical conductivity. This research is anticipated to produce materials with enhanced lifetime and reprocessability due to the healing properties enabled by dynamic bonding. This will enable the next generation of polymeric materials to have extended useful lifetime, with reduced replacement costs, improved performance against mechanical challenges, and enhanced conductivity. The material synthesis strategies developed in this research could be translated to additive manufacturing enabling a range of tailor-made materials with complex structures. This project will also include outreach activities that place dynamically cross-linked polymers in the hands of K-12 students and develop continuing education activities for K-12 teachers. This project will also develop educational tools to promote critical thinking and involvement in classrooms to train the next generation of scientists and propel them to productive careers in science. Further, this project will engage students of diverse backgrounds in graduate and undergraduate research, to foster participation in STEM fields from populations that are traditionally underrepresented.PART 2: TECHNICAL SUMMARY This research will develop well-defined polymers containing dual-dynamic crosslinking, where both a non-covalent linker that exchanges rapidly and a dynamic covalent linker that exchanges under external stimulus are used in one polymer material. This will create materials that combine the toughness, malleability, reprocessability and self-healing character imparted by dynamic bonding while retaining mechanical stability and resistance to creep of traditional thermosets. The research will lead to new materials by combining dual dynamic crosslinking with polymers of controlled structure and new strategies for bonding carbon nanotube reinforcements to the matrix. Polymers will be synthesized with control over chain-length, placement of crosslinkers along the chain, and density of crosslinkers. Diels-Alder chemistry will be used to dynamically bond the carbon nanotube reinforcements. Advanced structures such as interpenetrating networks and segmented polymers will be introduced to improve mechanical properties. Performance of each material will be evaluated through a number of mechanical and electrical tests, and lead to correlation of macroscopic properties with the underlying polymer structure. Specific objectives of this research are:1. Create dual dynamic single and interpenetrating networks with precise control over chain length and crosslinker placement along the polymer backbone.2. Reinforce dual dynamically crosslinked polymers using dynamic bonds between carbon nanotubes and the matrix.3. Make interpenetrating network and single network carbon nanotube composite materials with precise control over polymer microstructure.4. Elucidate structure-property correlations between the polymer architecture and microstructure and the mechanical and electrical properties of the materials.Educational activities focus on three key areas: 1) Outreach to secondary school teachers and students; 2) Development of new pedagogies; 3) Increasing diversity in STEM. The first area will include outreach to K-12 students on polymeric materials with non-covalent and dynamic covalent crosslinkers, as well as continuing education activities for teachers. The second area will focus on tools to engage students to reflect on their own learning, and develop connections between experiments and classroom activities. The third area will increase involvement of students from traditionally underrepresented groups in STEM studies and research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术总结项目旨在通过明智的分子结构和纳米级增强来开发具有增强机械性能和电导率的聚合物材料。将“动态键”(即可以在不同组之间交换的化学键)将“动态键”引入聚合物材料中,可以导致自我修复特性,并在外部对材料外部损害的情况下提高稳定性。但是,当应用外力时,这也可能导致形状永久变化,这可能会限制应用程序中的效用。在该提案中开发的聚合物将将不同类型的动态键合成相同的材料,以使可自我的特性与长期稳定性结合在一起。有必要了解基础聚合物结构如何影响动态交联聚合物的性质。为此目的,将对基础聚合物的结构进行调整,并通过掺入碳纳米管来实现其他强化,这将改善机械性能和电导率。 预计这项研究将由于动态粘结所实现的愈合特性而产生具有增强寿命和重新处理性的材料。这将使下一代的聚合物材料能够延长有用的寿命,替代成本降低,针对机械挑战的性能提高,并提高了电导率。这项研究中开发的材料合成策略可以转化为增材制造,从而使一系列具有复杂结构的量身定制材料。该项目还将包括外展活动,这些活动将动态交联的聚合物掌握在K-12学生手中,并为K-12教师开发继续教育活动。该项目还将开发教育工具,以促进批判性思维和参与课堂,以培训下一代科学家,并将其推向科学生产性职业。此外,该项目将吸引各种背景的学生在研究生和本科研究中,以促进传统人群中人群中的茎领域的参与。第2部分:技术摘要这项研究将开发出含有良好定义的聚合物,这些聚合物含有良好的双动力交叉链接,在不使用外部触发器的情况下进行了跨性别的触发器,可以交换势力迅速的链接。 材料。这将创建结合韧性,可延展性,重新处理性和自我修复特征,通过动态键合,同时保持机械稳定性和对传统热热器蠕变的抵抗力。这项研究将通过将双重动态交联与受控结构的聚合物和将碳纳米管钢筋粘结到矩阵结合的新策略结合到新材料。 聚合物将通过控制链长,沿链的交联链链接的位置以及交联链密度合成。 Diels-Alder化学将用于动态键合碳纳米管增强。将引入高级结构,例如互穿网络和分段聚合物,以改善机械性能。每种材料的性能将通过许多机械和电气测试来评估,并导致宏观特性与基础聚合物结构的相关性。这项研究的具体目标是:1。创建双重动态单和互穿网络,并沿聚合物骨架进行精确控制链长和交联位置。2。使用碳纳米管和矩阵之间的动态键进行动态交联聚合物。3。制作互穿网络和单网络碳纳米管复合材料,具有对聚合物微结构的精确控制。4。阐明聚合物架构与微结构与材料的机械和电气性能之间的结构质地相关性。教育活动集中在三个关键领域:1)向中学教师和学生推广; 2)开发新教学法; 3)茎的多样性增加。第一个领域将包括向K-12学生提供有关具有非共价和动态共价交联的聚合物材料以及为教师继续进行教育活动的聚合物材料。第二个领域将着重于吸引学生反思自己学习的工具,并在实验和课堂活动之间建立联系。第三领域将增加来自传统代表性小组在STEM研究和研究中的学生的参与。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tuning mechanical behavior of polymer materials via multi-arm crosslinked network architectures
- DOI:10.1103/physrevmaterials.6.125602
- 发表时间:2022-12
- 期刊:
- 影响因子:3.4
- 作者:Peter J. Hayes;Dominik Konkolewicz;Mehdi B. Zanjani
- 通讯作者:Peter J. Hayes;Dominik Konkolewicz;Mehdi B. Zanjani
Computational Investigation of the Effect of Network Architecture on Mechanical Properties of Dynamically Cross‐Linked Polymer Materials
- DOI:10.1002/mats.201900008
- 发表时间:2019-04
- 期刊:
- 影响因子:1.4
- 作者:Mehdi B. Zanjani;Borui Zhang;Ballal Ahammed;Joseph P. Chamberlin;Progyateg Chakma;Dominik Konkolewicz;Z. Ye
- 通讯作者:Mehdi B. Zanjani;Borui Zhang;Ballal Ahammed;Joseph P. Chamberlin;Progyateg Chakma;Dominik Konkolewicz;Z. Ye
Using Experimental Spectroscopic Data to Guide and Validate Mechanisms in Catalyzed Aldol Reactions
使用实验光谱数据指导和验证催化羟醛反应的机制
- DOI:10.1021/acs.jchemed.2c00185
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Weaver, Kyle;Reeves, Jennifer A.;Konkolewicz, Dominik
- 通讯作者:Konkolewicz, Dominik
Carbon nanotube enhanced dynamic polymeric materials through macromolecular engineering
- DOI:10.1039/d0ma00143k
- 发表时间:2020-08
- 期刊:
- 影响因子:5
- 作者:Erika B. Stopler;O. Dodo;Alexander C. Hull;Kyle A. Weaver;Progyateg Chakma;R. Edelmann;Logan Ranly;Mehdi B. Zanjani;Z. Ye;Dominik Konkolewicz
- 通讯作者:Erika B. Stopler;O. Dodo;Alexander C. Hull;Kyle A. Weaver;Progyateg Chakma;R. Edelmann;Logan Ranly;Mehdi B. Zanjani;Z. Ye;Dominik Konkolewicz
Designing Dynamic Materials from Dynamic Bonds to Macromolecular Architecture
- DOI:10.1016/j.trechm.2020.12.005
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Nethmi De Alwis Watuthanthrige;Progyateg Chakma;Dominik Konkolewicz
- 通讯作者:Nethmi De Alwis Watuthanthrige;Progyateg Chakma;Dominik Konkolewicz
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominik Konkolewicz其他文献
Polymer Conjugation to Enhance Cellulase Activity and Preserve Thermal and Functional Stability.
聚合物缀合可增强纤维素酶活性并保持热稳定性和功能稳定性。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.7
- 作者:
Thaiesha A Wright;Melissa Lucius Dougherty;Benjamin Schmitz;Kevin M. Burridge;Katherine Makaroff;Jamie M Stewart;Henry Fischesser;Jerry T Shepherd;J. Berberich;Dominik Konkolewicz;R. Page - 通讯作者:
R. Page
Engineering a Tunnel to a More Versatile Lipoic Acid Ligase
设计一个更通用的硫辛酸连接酶隧道
- DOI:
10.1096/fasebj.31.1_supplement.922.10 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Benjamin Schmitz;Dominik Konkolewicz;Richard C. Page - 通讯作者:
Richard C. Page
Toward a more general solution to the band-broadening problem in size separation of polymers
寻求聚合物尺寸分离中谱带展宽问题的更通用解决方案
- DOI:
10.1021/ma062973a - 发表时间:
2007 - 期刊:
- 影响因子:5.5
- 作者:
Dominik Konkolewicz;James W. Taylor;P. Castignolles;Angus A Gray;R. Gilbert - 通讯作者:
R. Gilbert
Low ppm CuBr-Triggered Atom Transfer Radical Polymerization under Mild Conditions
温和条件下低 ppm CuBr 引发的原子转移自由基聚合
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Richard Whitfield;Kostas Parkatzidis;Kate G. E. Bradford;N. Truong;Dominik Konkolewicz;Athina Anastasaki - 通讯作者:
Athina Anastasaki
Tuning polymer properties through competitive processes
通过竞争性工艺调整聚合物性能
- DOI:
10.1021/bk-2012-1100.ch010 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Dominik Konkolewicz;Dagmar R. D’hooge;K. Sosnowski;R. Szymanski;M. Reyniers;G. Marin;K. Matyjaszewski - 通讯作者:
K. Matyjaszewski
Dominik Konkolewicz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominik Konkolewicz', 18)}}的其他基金
CAS: Responsive Macromolecules by Wavelength Controlled Vinyl Ketone Photopolymerization and Photodegradation
CAS:波长控制乙烯基酮光聚合和光降解响应大分子
- 批准号:
2203727 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RAPID: Viral Particle Disrupting and Sequestering Polymer Materials applied to Coronaviruses
RAPID:用于冠状病毒的病毒颗粒破坏和隔离聚合物材料
- 批准号:
2030567 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
2019 Chemistry Early Career Investigator Workshop
2019年化学早期职业研究员研讨会
- 批准号:
1912099 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
4D打印记忆聚合物支架的动态机械信号介导的Cav-1/YAP轴调控骨免疫促进颌骨再生的机制研究
- 批准号:82371006
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
通过压力对多孔聚合物泡沫吸波/导热性能的动态调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
通过压力对多孔聚合物泡沫吸波/导热性能的动态调控机制研究
- 批准号:22208266
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
动态键杂化-纤维束增韧的仿生聚合物设计及高可靠性柔性电子皮肤构筑
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“相锁定”策略的动态超分子聚合物电解质设计与界面作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
- 批准号:
2342272 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Characterization of dynamic heterogeneity in polymer ultrathin film systems and investigation of the origin of the decoupling in dynamics
聚合物超薄膜系统动态异质性的表征及动力学解耦起源的研究
- 批准号:
23K04853 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental and applied research on dynamic polymer brush system floating on water with high-order responsiveness
高阶响应漂浮于水面的动态聚合物刷系统基础与应用研究
- 批准号:
22KJ0790 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Room-temperature self-healing glassy polymer
室温自修复玻璃状聚合物
- 批准号:
22KJ0971 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for JSPS Fellows