In-Situ Formation of Ternary Sulfide-rich Interphases for Stabilizing Lithium Deposition in Lithium-sulfur Batteries
原位形成富含三元硫化物的界面相以稳定锂硫电池中的锂沉积
基本信息
- 批准号:2011415
- 负责人:
- 金额:$ 44.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy storage at an affordable cost has emerged as one of the challenging issues for the energy sector, being critical for a wide range of applications ranging from electric vehicles to grid storage of renewable energies. Lithium-sulfur batteries are one the most promising next-generation battery technologies, as lithium and sulfur exhibit charge-storage capacity ten times higher than that of the electrode materials used in current lithium-ion batteries. Also, sulfur is environmentally benign, inexpensive, and widely available with secure domestic supply chains. Despite these advantages, the commercial adoption of lithium-sulfur batteries is hobbled by their poor cycle life. This project focuses on developing an effective strategy for improving the cycle life of lithium-sulfur batteries by systematically tuning the surface composition and properties of the anode. The effect of the modified interface material anode layer on the cycle life will be investigated with various computational, electrochemical, and materials characterization techniques. This will be a crucial step towards realizing practically relevant lithium-sulfur batteries with high energy density and extended cycle life. This work is also expected to yield new insights into the unique chemistry of sulfur compounds, which find applications in diverse areas, including photovoltaics, catalysis, and organic semiconductors. The project will also provide a broad interdisciplinary training to graduate and undergraduate students as well as historically underrepresented community college students and teachers in the globally important area of clean energy, encompassing inorganic chemistry, solid-state physics, electrochemical systems, and materials science and engineering.The unique chemistry of sulfur and its tendency to form polysulfide intermediates that are soluble in the liquid electrolyte profoundly impact the solid-electrolyte interphase (SEI) layer formed on lithium-metal surface in Li-S batteries. This project focuses on developing a systematic and effective strategy for tailoring the composition of the SEI layer to improve the reversibility of lithium plating and stripping in Li-S batteries. Electrolyte and cathode additives will be identified that work in tandem with the generated polysulfide intermediates to form a stabilizing SEI layer on lithium-metal surface. Specifically, high Li-ion conductivity LiXS ternary sulfides will be investigated as in-situ engineered SEI components, where X is a high-oxidation state cation of an element less electronegative than sulfur. It is hypothesized that the nature of X-S bond would play a critical role in determining the properties of the modified SEI layer, and consequently, the measured lithium cycling efficiency. The impact of the in-situ modified SEI layers on electrochemical performance will be assessed with practically relevant anode-free full cells (limited lithium inventory) and pouch cells (limited electrolyte supply) by determining the lithium inventory loss rates. With the in-situ engineering of a sulfide-rich lithium SEI and careful application of computational and materials characterization techniques, the project aims to (i) identify stabilizing SEI components in Li-S batteries and methods of fabricating them, (ii) establish a fundamental understanding of the composition-structure-property relationships that underlie the effect of SEI layer on the reversibility of lithium plating and stripping, and (iii) demonstrate the impact of SEI modification on electrochemical performance under realistic cell design and testing conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
以可承受的成本进行能源存储已成为能源行业面临的挑战性问题之一,对于从电动汽车到可再生能源电网存储等广泛应用至关重要。锂硫电池是最有前途的下一代电池技术之一,因为锂和硫的电荷存储容量比当前锂离子电池中使用的电极材料高十倍。此外,硫对环境无害,价格低廉,并且可以通过安全的国内供应链广泛获得。尽管具有这些优点,但锂硫电池的商业应用因其较差的循环寿命而受到阻碍。 该项目的重点是开发一种有效的策略,通过系统地调整阳极的表面成分和性能来提高锂硫电池的循环寿命。改性界面材料阳极层对循环寿命的影响将通过各种计算、电化学和材料表征技术进行研究。这将是实现具有高能量密度和延长循环寿命的实用锂硫电池的关键一步。这项工作还有望对硫化合物的独特化学产生新的见解,从而在光伏、催化和有机半导体等多个领域找到应用。该项目还将为全球重要的清洁能源领域的研究生和本科生以及历史上代表性不足的社区学院学生和教师提供广泛的跨学科培训,包括无机化学、固态物理、电化学系统以及材料科学与工程硫的独特化学性质及其形成可溶于液体电解质的多硫化物中间体的倾向,深刻影响了锂硫电池中锂金属表面形成的固体电解质界面(SEI)层。该项目的重点是开发一种系统且有效的策略来调整SEI层的成分,以提高锂硫电池中锂沉积和剥离的可逆性。电解质和阴极添加剂将与生成的多硫化物中间体协同作用,在锂金属表面形成稳定的 SEI 层。具体来说,高锂离子电导率的 LiXS 三元硫化物将作为原位工程 SEI 组分进行研究,其中 X 是电负性低于硫的元素的高氧化态阳离子。据推测,X-S 键的性质在确定改性 SEI 层的性能以及测量的锂循环效率方面将发挥关键作用。原位改性 SEI 层对电化学性能的影响将通过确定锂库存损失率,使用实际相关的无阳极全电池(有限的锂库存)和软包电池(有限的电解质供应)进行评估。通过富硫化物锂 SEI 的原位工程以及计算和材料表征技术的仔细应用,该项目旨在 (i) 确定 Li-S 电池中的稳定 SEI 成分及其制造方法,(ii) 建立对 SEI 层对锂沉积和剥离可逆性影响的成分-结构-性能关系的基本理解,以及 (iii) 证明 SEI 改性在实际电池设计和测试条件下对电化学性能的影响。该奖项反映了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thiometallate-mediated polysulfide chemistry and lithium stabilization for stable anode-free lithium-sulfur batteries
- DOI:10.1016/j.xcrp.2022.100808
- 发表时间:2022-03-01
- 期刊:
- 影响因子:8.9
- 作者:S. N;a;a;Hooman Yaghoobnejad Asl;A. Bhargav;A. Manthiram
- 通讯作者:A. Manthiram
Implications of in situ chalcogen substitutions in polysulfides for rechargeable batteries
多硫化物中原位硫属元素替代对可充电电池的影响
- DOI:10.1039/d1ee01113h
- 发表时间:2021-08-11
- 期刊:
- 影响因子:32.5
- 作者:S. N;a;a;A. Bhargav;Z. Jiang;Xunhua Zhao;Yuanyue Liu;A. Manthiram
- 通讯作者:A. Manthiram
Lithium Trithiocarbonate as a Dual‐Function Electrode Material for High‐Performance Lithium–Sulfur Batteries
三硫代碳酸锂作为高性能锂硫电池的双功能电极材料
- DOI:10.1002/aenm.202200680
- 发表时间:2022-04-22
- 期刊:
- 影响因子:27.8
- 作者:Hyunki Sul;A. Bhargav;A. Manthiram
- 通讯作者:A. Manthiram
Taming polysulfides in sulfur-based batteries via electrolyte-soluble thiomolybdate additives
通过电解质可溶性硫代钼酸盐添加剂驯化硫基电池中的多硫化物
- DOI:10.1039/d2ta03893e
- 发表时间:2022-08
- 期刊:
- 影响因子:11.9
- 作者:Asl, Hooman Yaghoobnejad;Bhargav, Amruth;Manthiram, Arumugam
- 通讯作者:Manthiram, Arumugam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arumugam Manthiram其他文献
Understanding the Influence of Composition and Synthesis Temperature on Oxygen Loss, Reversible Capacity, and Electrochemical Behavior of xLi2MnO3?(1 ? x)LiCoO2 Cathodes in the First Cycle
了解成分和合成温度对 xLi2MnO3·(1·x)LiCoO2 正极首次循环中的氧损失、可逆容量和电化学行为的影响
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Xingde Xiang;James C. Knight;Weishan Li;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Combining Nitrogen-doped Graphene Sheets and MoS2: A Unique Film-foam-film Structure for Enhanced Lithium Storage
结合氮掺杂石墨烯片和二硫化钼:一种独特的薄膜-泡沫-薄膜结构,可增强锂存储
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shan Ting-Tian;Xin Sen;You Ya;Cong Huai-Ping;Yu Shu-Hong;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
High-voltage positive electrode materials for lithium-ion batteries
- DOI:
10.1039/c6cs00875e - 发表时间:
2017-04 - 期刊:
- 影响因子:46.2
- 作者:
Wangda Li;Bohang Song;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
MnNiCoO4/N-MWCNT nanocomposite catalyst with high selectivity in membraneless direct formate fuel cells and bifunctional activity for oxygen electrochemistry
- DOI:
10.1039/c4cy01702a - 发表时间:
2015-02 - 期刊:
- 影响因子:5
- 作者:
Xingwen Yu;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay
- DOI:
10.1039/c3ta14975g - 发表时间:
2014-01 - 期刊:
- 影响因子:11.9
- 作者:
Eun-Sung Lee;Arumugam Manthiram - 通讯作者:
Arumugam Manthiram
Arumugam Manthiram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arumugam Manthiram', 18)}}的其他基金
Understanding the Structural Transformations of Aluminum Foil Anodes during Electrochemical De(alloying) for Sustainable Lithium-ion Batteries
了解可持续锂离子电池电化学脱(合金)过程中铝箔阳极的结构转变
- 批准号:
2321486 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
MRI: Acquisition of a Nanofabrication and Electron Microscopy System for Materials Research
MRI:采购用于材料研究的纳米加工和电子显微镜系统
- 批准号:
1827608 - 财政年份:2018
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
Microwave-Assisted Chemical Insertion for Designing Multivalent-ion Battery Hosts
用于设计多价离子电池主体的微波辅助化学插入
- 批准号:
1709081 - 财政年份:2017
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
MIRT: Exploring Unusual Properties of Transition Metal Oxides
MIRT:探索过渡金属氧化物的不寻常性质
- 批准号:
1122603 - 财政年份:2011
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
Nanostructured Palladium-based Alloy Catalysts for Fuel Cells
用于燃料电池的纳米结构钯基合金催化剂
- 批准号:
0651929 - 财政年份:2007
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
Borohydrides as Reducing Agents in the Synthesis of Inorganic Materials
硼氢化物作为无机材料合成中的还原剂
- 批准号:
9401999 - 财政年份:1994
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
Acquisition of a SQUID Magnetometer
获取 SQUID 磁力计
- 批准号:
9109080 - 财政年份:1991
- 资助金额:
$ 44.73万 - 项目类别:
Standard Grant
相似国自然基金
基于扰动流体动态系统和仿射变换的多AUV编队控制
- 批准号:52301378
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非完全合作网络下多无人机分组编队包围控制
- 批准号:62373097
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
局部相对测量下多无人系统全自由度仿射编队机动控制
- 批准号:62373048
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高速公路混合流环境下自动驾驶编队低延误换道优化控制方法研究
- 批准号:52302400
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的多无人船协同编队与路径规划
- 批准号:52371372
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The archaeological study on local societies in state formation process as seen from 3D measurement of horizontal stone chamber tombs in Kyushu, Japan, during the 6th to 7th centuries AD
从公元六至七世纪日本九州水平石室墓的三维测量看地方社会国家形成过程的考古研究
- 批准号:
23K00933 - 财政年份:2023
- 资助金额:
$ 44.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An archaeological study on local ruling systems in state formation process as seen from 3D measurement of horizontal stone chamber tombs in Northern Kyushu, Japan, during the 6th to 7th centuries AD
从公元六至七世纪日本九州北部水平石室墓的三维测量看国家形成过程中地方统治制度的考古学研究
- 批准号:
20K01076 - 财政年份:2020
- 资助金额:
$ 44.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nano-Interconnect Formation by Directed Self-Assembly with Staining
通过染色定向自组装形成纳米互连
- 批准号:
20K20992 - 财政年份:2020
- 资助金额:
$ 44.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
GOALI: Ternary Metal Diboride Coatings with Enhanced Oxidation Resistance and Durability - Understanding Phase Formation from a Metastable Starting State
GOALI:具有增强的抗氧化性和耐久性的三元金属二硼化物涂层 - 了解亚稳态起始状态的相形成
- 批准号:
1914769 - 财政年份:2019
- 资助金额:
$ 44.73万 - 项目类别:
Continuing Grant
Formation of interfacial stress-induced unprecedented ordered alloy nanoparticles and exploration of their structure-specific properties
界面应力诱导的前所未有的有序合金纳米粒子的形成及其结构特定性能的探索
- 批准号:
19K22231 - 财政年份:2019
- 资助金额:
$ 44.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)