Collaborative Research: SHF: Small: Optimization of Memory Architectures: A Foundation Approach

合作研究:SHF:小型:内存架构优化:基础方法

基本信息

  • 批准号:
    2008907
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project proposes a foundational approach to model-driven performance optimization of memory systems for modern computer architectures, with the development of a set of memory-architecture optimization methods and tools that are theoretically proven and empirically feasible for modern memory architecture design. The outcome of this project will significantly improve the performance modeling and optimization techniques for designing and evaluating memory architectures in modern computer systems, featuring deep and diverse memory-system hierarchies, heterogeneous memory devices, and complex data-intensive applications, including big-data, cloud and data centers and high-performance computing applications. The findings of this project will improve the content of various courses that the PIs teach. This project plans to proactively recruit minority students by taking advantage of the institutional efforts at IIT and especially at FIU, which is a minority-serving institution. This project will align education and outreach activities with an existing research and education center.The growing disparity between CPU and memory speed causes memory accesses to become a severe performance bottleneck in modern computer architectures. Attempts to solving this “memory wall” problem underpin technological innovations in computer-architecture design over the last two and half decades. The objective of the research is to significantly extend prior memory models and create a practical memory-architecture performance-modeling and optimization framework that can capture the combined effects of data locality, data concurrency, access latency, and multi-tier memory architecture for real applications and on real systems. A simulation-driven approach will be developed with elaborate real-system measurements and performance analyses to examine the potential benefits and identify the performance issues of various memory-architecture designs. More specifically, this project will develop along three research directions: (1) developing theoretical and architectural foundations to address both fundamental questions related to the tiered heterogeneous memory architectures and investigate practical aspects of applying the modeling and optimization framework for various memory architectures; (2) performing model-driven memory-architecture design and optimization for specific memory architectures, including disaggregated memory system, GPU, and deep-memory hierarchy with hybrid memory devices including non-volatile memory; and (3) developing the memory architecture simulator embedded with the performance modeling and optimization framework, and conducting simulation studies and real system measurements to evaluate memory performance, and compare design alternatives and trade-offs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目提出了一种针对现代计算机架构的模型驱动的内存系统性能优化的基本方法,开发了一套经过理论验证且在经验上对现代内存架构设计可行的内存架构优化方法和工具。显着改进现代计算机系统中设计和评估内存架构的性能建模和优化技术,具有深度和多样化的内存系统层次结构、异构内存设备和复杂的数据密集型应用程序,包括大数据、云和数据中心该项目的研究结果将改进 PI 教授的各种课程的内容。该项目计划利用 IIT,特别是少数族裔群体的佛罗里达国际大学的机构努力,主动招收少数族裔学生。该项目将使教育和外展活动与现有的研究和教育中心保持一致。CPU 和内存速度之间日益扩大的差距导致内存访问成为现代计算机体系结构中严重的性能瓶颈。支撑技术该研究的目标是显着扩展先前的内存模型,并创建一个实用的内存架构性能建模和优化框架,该框架可以捕获数据局部性、数据的综合影响。将通过详细的真实系统测量和性能分析来开发模拟驱动的方法,以检查潜在的好处并识别各种内存的性能问题。更具体地说,该项目将沿着三个研究方向发展:(1)开发理论和架构基础,以解决与分层异构内存架构相关的基本问题,并实际研究将建模和优化框架应用于各种内存架构的方面;(2)执行模型; - 针对特定内存架构的驱动内存架构设计和优化,包括分解内存系统、GPU 和具有混合内存设备(包括非易失性内存)的深度内存层次结构;以及 (3) 开发嵌入性能建模的内存架构模拟器;和优化框架,并进行模拟研究和真实系统测量来评估内存性能,并比较设计方案和权衡。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Generalized Model for Modern Hierarchical Memory System
现代分层存储系统的通用模型
  • DOI:
    10.1109/wsc57314.2022.10015298
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Najafi, Hamed;Liu, Jason;Lu, Xiaoyang;Sun, Xian
  • 通讯作者:
    Sun, Xian
Premier: A Concurrency-Aware Pseudo-Partitioning Framework for Shared Last-Level Cache
Premier:用于共享末级缓存的并发感知伪分区框架
The Memory-Bounded Speedup Model and Its Impacts in Computing
内存限制加速模型及其对计算的影响
APAC: An Accurate and Adaptive Prefetch Framework with Concurrent Memory Access Analysis
APAC:具有并发内存访问分析功能的准确自适应预取框架
A Study on Modeling and Optimization of Memory Systems
内存系统建模与优化研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xian-He Sun其他文献

HARL: Optimizing Parallel File Systems with Heterogeneity-Aware Region-Level Data Layout
HARL:使用异构感知区域级数据布局优化并行文件系统
HCDA: From Computational Thinking to a Generalized Thinking Paradigm
HCDA:从计算思维到广义思维范式
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuhang Liu;Xian-He Sun;Yang Wang;Yungang Bao
  • 通讯作者:
    Yungang Bao
Optimizing Parallel I/O Accesses through Pattern-Directed and Layout-Aware Replication
通过模式导向和布局感知复制优化并行 I/O 访问
Enhancing Hybrid Parallel File System through Performance and Space-Aware Data layout
通过性能和空间感知数据布局增强混合并行文件系统
On Cost-Driven Collaborative Data Caching: A New Model Approach
成本驱动的协作数据缓存:一种新的模型方法

Xian-He Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xian-He Sun', 18)}}的其他基金

Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
  • 批准号:
    2310422
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
OAC Core: LABIOS: Storage Acceleration via Data Labeling and Asynchronous I/O
OAC 核心:LABIOS:通过数据标签和异步 I/O 进行存储加速
  • 批准号:
    2313154
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CNS Core: Small: Practical Memory Access Pattern Obfuscation with Algorithm, Application and Architecture Co-designs
CNS 核心:小型:通过算法、应用程序和架构协同设计进行实用内存访问模式混淆
  • 批准号:
    2152497
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Frameworks: Collaborative Research: ChronoLog: A High-Performance Storage Infrastructure for Activity and Log Workloads
框架:协作研究:ChronoLog:用于活动和日志工作负载的高性能存储基础架构
  • 批准号:
    2104013
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Frameworks: Collaborative Research: ChronoLog: A High-Performance Storage Infrastructure for Activity and Log Workloads
框架:协作研究:ChronoLog:用于活动和日志工作负载的高性能存储基础架构
  • 批准号:
    2104013
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CSR: Small: IRIS: A unified data access framework for the merging of compute-centric and data-centric storage
CSR:小型:IRIS:用于合并以计算为中心和以数据为中心的存储的统一数据访问框架
  • 批准号:
    1814872
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Framework: Software: NSCI: Collaborative Research: Hermes: Extending the HDF Library to Support Intelligent I/O Buffering for Deep Memory and Storage Hierarchy Systems
框架: 软件:NSCI:协作研究:Hermes:扩展 HDF 库以支持深度内存和存储层次系统的智能 I/O 缓冲
  • 批准号:
    1835764
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Eager: Collaborative Research: DiRecMR: Reconciling the Dichotomy of MapReduce for Efficient Speculation and Resilience
Eager:协作研究:DiRecMR:调和 MapReduce 的二分法以实现高效推测和弹性
  • 批准号:
    1744317
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CRI: II-NEW: A Big Data Professing Infrastructure for Smart Energy Systems
CRI:II-NEW:智能能源系统的大数据专业基础设施
  • 批准号:
    1730488
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Eager: Collaborative Research: DiRecMR: Reconciling the Dichotomy of MapReduce for Efficient Speculation and Resilience
Eager:协作研究:DiRecMR:调和 MapReduce 的二分法以实现高效推测和弹性
  • 批准号:
    1744317
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
  • 批准号:
    42274025
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了