Collaborative Research: SHF: Small: An Automated Full-Lifecycle Approach for Improving the Development and Use of Static Analysis

合作研究:SHF:小型:改进静态分析开发和使用的自动化全生命周期方法

基本信息

  • 批准号:
    2008905
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Because software failures can and do cause severe, even life-threatening losses, effective quality assurance remains a constant concern for software developers. In fact, over the past decades, numerous software analysis techniques have been developed to address this concern. These techniques represent a powerful means of detecting bugs or proving their absence. Despite their theoretical superiority, static program analysis tools have had relatively limited industry adoption. Static analysis tools aiming for practical solutions are forced to approximate, trading off precision (i.e., better modeling to ensure correctness) against performance (i.e., faster analysis). Finding the right balance of the complex tradeoffs between performance and precision when developing and using static analysis tools is extremely challenging. This project seeks to reduce practical barriers to conquering this tradeoff. Successful outcomes of this project are likely to improve static analysis tool adoption rates, and thereby improve the safety, security and functionality of critical software that society depends upon. This project aims to achieve more effective static analysis design and usage through cohesive development and usage lifecycle that is powerfully augmented with automated support. This automated support includes systematic evaluation and generation of benchmarks for static analysis tools, localizing sources of imprecision and performance bottlenecks, configuring tool settings that are likely to produce correct and timely results, using machine learning approaches to identify and filter false positives, and integrating these improvements into a demonstration system that leverages information and experiences coming from both tool developers and tool users. This augmented and automated lifecycle will identify frequently occurring code patterns that significantly affect performance/precision tradeoffs in specific tools, allowing tool developers to quickly improve their tools. It will also enable tools designed to customize their behavior and analysis approaches to specific target programs. At the same time, this will provide static analysis tool users with automated support for tuning tool configurations to quickly get more effective results. This is supported by automated classification of tool error reports, reducing effort wasted investigating false positives. These improvements used in concert with each other will result in greatly improved static analysis tools, and much-increased use of these tools in analyzing real-world software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于软件故障可能并且确实会造成严重甚至危及生命的损失,因此有效的质量保证仍然是软件开发人员始终关注的问题。事实上,在过去的几十年里,已经开发了许多软件分析技术来解决这个问题。这些技术代表了检测错误或证明错误不存在的强大方法。尽管静态程序分析工具具有理论优势,但其行业采用率相对有限。针对实际解决方案的静态分析工具被迫进行近似,在精度(即更好的建模以确保正确性)与性能(即更快的分析)之间进行权衡。在开发和使用静态分析工具时,在性能和精度之间的复杂权衡中找到适当的平衡是极具挑战性的。该项目旨在减少克服这种权衡的实际障碍。该项目的成功成果可能会提高静态分析工具的采用率,从而提高社会所依赖的关键软件的安全性和功能性。该项目旨在通过紧密结合的开发和使用生命周期(通过自动化支持得到有力增强)来实现更有效的静态分析设计和使用。这种自动化支持包括系统评估和生成静态分析工具的基准、定位不精确的来源和性能瓶颈、配置可能产生正确和及时结果的工具设置、使用机器学习方法来识别和过滤误报以及集成这些改进演示系统,利用来自工具开发人员和工具用户的信息和经验。这种增强和自动化的生命周期将识别经常出现的代码模式,这些代码模式会显着影响特定工具的性能/精度权衡,从而使工具开发人员能够快速改进他们的工具。它还将使旨在针对特定目标程序定制其行为和分析方法的工具成为可能。同时,这将为静态分析工具用户提供调整工具配置的自动化支持,以快速获得更有效的结果。这得到了工具错误报告自动分类的支持,减少了调查误报所浪费的精力。这些改进相互配合使用将大大改进静态分析工具,并在分析实际软件时更多地使用这些工具。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,被认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ECSTATIC: Automatic Configuration-Aware Testing and Debugging of Static Analysis Tools
ECSTATIC:静态分析工具的自动配置感知测试和调试
The impact of tool configuration spaces on the evaluation of configurable taint analysis for Android
工具配置空间对 Android 可配置污点分析评估的影响
ECSTATIC: An Extensible Framework for Testing and Debugging Configurable Static Analysis
ECSTATIC:用于测试和调试可配置静态分析的可扩展框架
SATune: A Study-Driven Auto-Tuning Approach for Configurable Software Verification Tools
SATune:一种研究驱动的可配置软件验证工具自动调优方法
An empirical assessment of machine learning approaches for triaging reports of static analysis tools
对静态分析工具分类报告的机器学习方法的实证评估
  • DOI:
    10.1007/s10664-022-10253-z
  • 发表时间:
    2023-01-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Sai Yerramreddy;Austin Mordahl;Ugur Koc;Shiyi Wei;J. Foster;Marine Carpuat;A. Porter
  • 通讯作者:
    A. Porter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiyi Wei其他文献

RTL-Spec: RTL Spectrum Analysis for Security Bug Localization
RTL-Spec:用于安全漏洞定位的 RTL 频谱分析
Localizing configurations in highly-configurable systems
在高度可配置的系统中本地化配置
Practical blended taint analysis for JavaScript
JavaScript 实用混合污点分析
Three-dimensional finite element analysis for temperature filed of composite materials during the cure
复合材料固化过程温度场三维有限元分析
Highly Efficient Iodine Capture by Hydrophobic Bismuth-based Chrysotile Membrane from Humid Gas Streams
通过疏水性铋基温石棉膜从潮湿气流中高效捕获碘
  • DOI:
    10.1016/j.seppur.2023.123374
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Junyu Li;Lin Zhu;Chenhui Yan;Zhiwei Mou;Zhenghan Wang;Shiyi Wei;Yangfan Su;Yuxuan Chen;Zhengguo Chen;Xiaoan Li;Tao Duan;Jiehong Lei
  • 通讯作者:
    Jiehong Lei

Shiyi Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiyi Wei', 18)}}的其他基金

CAREER: Improving the Practicality of Configurable Static Analysis Tools through Analysis, Testing, Refinement and Adaptation
职业:通过分析、测试、细化和适应提高可配置静态分析工具的实用性
  • 批准号:
    2047682
  • 财政年份:
    2021
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
SHF: Small: Automated Fine-Grained Requirements Traceability
SHF:小型:自动化细粒度需求可追溯性
  • 批准号:
    1910976
  • 财政年份:
    2019
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Static Analysis Infrastructure for Variability-Aware Bug Detection and Translation of Highly-Configurable Software Systems
SHF:小型:协作研究:用于高度可配置软件系统的可变性缺陷检测和转换的静态分析基础设施
  • 批准号:
    1816951
  • 财政年份:
    2018
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
  • 批准号:
    62265011
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了