RAPID: Collaborative Research: New Generation of a Bio-inspired Protective Mask Based on Thermal & Vortex Traps

RAPID:合作研究:新一代基于热的仿生防护口罩

基本信息

项目摘要

With the rapid spread of the Coronavirus Disease 2019 (COVID-19) worldwide, highly-protective respirator masks can be crucial to safeguard the uninfected population. While virus transmission occurs via tiny aerosols, current mask coverings rely purely on passive filters; and can benefit from enhanced aerosol-collection and virus-inactivation mechanisms. We propose to engineer a highly-efficient, easy-to-use, cost-effective respirator design that will be significantly more efficient at capturing tiny aerosols. A combination of copper-based filters and an air-transmission passage inspired by nasal structures in animals with an enhanced sense of smell will facilitate droplet capture, followed by virus inactivation via thermal and ionic effects. The final respirator design will directly address the urgent global shortage and immediate national need for more effective masks. By preventing nosocomial transmission, the product can also be a critical game-changer for the healthcare community. For an accelerated concept-to-product transition, we will seek collaborations with virology labs and pharmaceutical companies for detailed testing with live COVID samples.This collaborative project will engineer a novel, highly-efficient, virus-preventive respirator mask inspired by nasal structures in animals with enhanced olfactory sensitivity. Small aerosol droplets that can carry viruses will be captured from inhaled air by using a combination of copper-based filters and a bio-inspired tortuous passage with periodic thermal gradients induced by spiral copper wires. The aerosol capture will be articulated by modulating the dynamics of flow structures in the convoluted geometry (vortex trap) and by thermophoresis action along the respirator’s internal walls (thermal trap). Cyclic cold/hot temperature changes on the walls, along with ionic activity from the copper material, will be used to inactivate the trapped viruses. The use of these mechanisms is supported by published observations on earlier and current strains of coronavirus. The project will integrate the theoretical, experimental, and computational expertise of the principal investigators in optimizing the design for a new-age respirator, which can be radically more effective at preventing the transmission of COVID-19. To meet the urgent public need, the researchers will establish collaborations with pharmaceutical and manufacturing companies as well as university-based Biosafety Level – 3 lab units for non-clinical in vivo testing and to ensure rapid prototype development of the proposed respirator masks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着2019年冠状病毒病(Covid-19)的迅速传播,高度保护的呼吸器口罩对于保护未感染的人群至关重要。尽管病毒传播是通过微小的气溶胶发生的,但当前的面膜覆盖物纯粹依赖于被动过滤器。并且可以从增强的气溶胶收集和病毒灭活机制中受益。我们建议设计一种高效,易于使用,具有成本效益的呼吸器设计,该设计将是基于铜的过滤器和由动物中鼻腔启发的空气传播的结合,具有增强的气味感,将促进液滴捕获,然后通过热和离子效应而灭活病毒。最终的呼吸器设计将直接解决紧急的全球短缺和对更有效面具的直接需求。通过防止医院传播,该产品也可以成为医疗保健社区的重要游戏规则改变者。为了进行加速的概念到产物的过渡,我们将与病毒学实验室和制药公司寻求合作,以与实时互联样品进行详细的测试。该协作项目将设计一种新型,高效的,高效的,病毒的呼吸器膜,受到增强嗅觉敏感性的动物的鼻腔结构的启发。可以通过使用铜基过滤器和由螺旋铜线引起的周期性热梯度的生物启发的曲折通道的组合来捕获可以携带病毒的小气溶胶液滴。通过调节复杂的几何形状(涡旋陷阱)中流动结构的动力学以及沿呼吸器的内壁(热陷阱)的热作用,可以阐明气溶胶捕获。墙壁上的环状冷/热温度变化以及铜材料的离子活性将用于使被困的病毒失活。这些机制的使用得到了对冠状病毒早期和当前菌株的公开观察的支持。该项目将整合主要研究人员在优化新时代呼吸器的设计方面的理论,实验和计算专业知识,这在防止Covid-19的传播方面可以更加有效。 To meet the urgent public need, the researchers will establish collaborations with pharmaceutical and manufacturing companies as well as university-based Biosafety Level – 3 lab units for non-clinical in vivo testing and to ensure rapid prototype development of the proposed respirator masks.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the design of particle filters inspired by animal noses
  • DOI:
    10.1098/rsif.2021.0849
  • 发表时间:
    2022-03-02
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yuk, Jisoo;Chakraborty, Aneek;Jung, Sunghwan
  • 通讯作者:
    Jung, Sunghwan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonardo Chamorro其他文献

Leonardo Chamorro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonardo Chamorro', 18)}}的其他基金

Collaborative Research: Dust Entrainment Processes by Convective Vortices and Localized Turbulent Structures: Experimental and Numerical Study
合作研究:对流涡旋和局部湍流结构的粉尘夹带过程:实验和数值研究
  • 批准号:
    2207026
  • 财政年份:
    2022
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Dynamics of Inertial Particles in Thermally-Stratified Flows within Electromagnetic Field
合作研究:电磁场内热分层流中惯性粒子的动力学
  • 批准号:
    1912824
  • 财政年份:
    2019
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
Collaborative Research: A Holistic Approach to Wind Energy Integration: From the Atmospheric Boundary Layer to the Power Grid
合作研究:风能整合的整体方法:从大气边界层到电网
  • 批准号:
    1610897
  • 财政年份:
    2016
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 6.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了