ATD: A Mathematical Framework for Generating Synthetic Data

ATD:生成综合数据的数学框架

基本信息

  • 批准号:
    2027248
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Progress in threat detection research is greatly hindered by the fact that many data sets related to areas of national security cannot be shared with experts in academia or industry due to security clearance barriers. The limited access to meaningful data sets prevents many researchers from contributing their expertise in algorithm development and verification. This research effort is poised to solve this important problem by developing a rigorous mathematical framework for the faithful and privacy-preserving generation of synthetic data. The goal is to create an as-realistic-as-possible dataset, one that not only maintains the nuances of the original data, but does so without endangering important pieces of sensible information. The results of this project will play a key role in advancing research in threat detection and many other fields where privacy is key. Strong expectation for success of this project is based on solid theoretical achievements by the investigators in high-dimensional probability, signal processing, and mathematical data science, as well as their expertise in turning advanced mathematical concepts into real-world applications in the areas of artificial intelligence, signal processing, medical diagnostics, threat detection, and communications engineering. This research effort is a fusion of several areas of cutting edge mathematics with state-of-the-art artificial intelligence. It seeks to bring advanced techniques from optimization, probability, and machine learning to data science in form of robust and efficient computational methods. Theoretical deliverables are expected to be in the form of new mathematical concepts for the development of multimodal scalable synthetic data. Computational deliverables will be in the form of numerical algorithms for privacy-protecting artificial intelligence. Beyond the project's broad technological impact, it will serve as a model for the kind of cross-disciplinary activity critical for research and education at the frontier of mathematics and data science. The payoffs for society at large are many, including increased privacy protection while maintaining the benefits of data-driven discovery. The users of synthetic data will include researchers in the national security sector, computer scientists, privacy experts, health administrators, medical information system developers, epidemiologists, oncologists and health economists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
威胁探测研究的进展极大地阻碍了以下事实:由于安全清除障碍,许多与国家安全领域有关的数据集不能与学术界或行业专家共享。对有意义的数据集的有限访问阻止了许多研究人员在算法开发和验证方面贡献其专业知识。 这项研究工作有望通过为忠实和隐私的合成数据开发严格的数学框架来解决这一重要问题。 目的是创建一个非常逼真的数据集,该数据集不仅要维护原始数据的细微差别,而且在不危害重要信息的情况下这样做。 该项目的结果将在推进威胁检测研究以及隐私是关键的许多其他领域中发挥关键作用。对该项目成功的强烈期望是基于研究人员在高维概率,信号处理和数学数据科学方面的扎实理论成就,及其在人工智能,信号处理,医疗诊断,威胁检测和通信工程领域中将高级数学概念转变为现实世界中的专业知识。 这项研究工作是融合了最先进数学领域与最先进的人工智能的融合。它试图以强大而有效的计算方法的形式将优化,概率和机器学习的先进技术带到数据科学。预计理论可交付成果将以新的数学概念的形式用于开发多模式可伸缩合成数据。 计算可交付成果将以用于保护人工智能的数值算法的形式。除了该项目的广泛技术影响外,它将成为数学和数据科学领域研究和教育至关重要的跨学科活动的模型。整个社会的回报是许多人,包括增加隐私保护,同时保持数据驱动的发现的好处。合成数据的用户将包括国家安全部门的研究人员,计算机科学家,隐私专家,卫生管理员,医疗信息系统开发人员,流行病学家,肿瘤学家和卫生经济学家。这项奖项反映了NSF的法定任务,并被认为是通过该基金会的知识功能和广泛影响的评估来评估Criteria的评估,并被认为是值得的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GRAND++: Graph Neural Diffusion with A Source Term
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Thorpe;T. Nguyen;Hedi Xia;T. Strohmer;A. Bertozzi;S. Osher;Bao Wang
  • 通讯作者:
    Matthew Thorpe;T. Nguyen;Hedi Xia;T. Strohmer;A. Bertozzi;S. Osher;Bao Wang
共 1 条
  • 1
前往

Thomas Strohmer其他文献

Auto-Calibration and Biconvex Compressive Sensing with Applications to Parallel MRI
自动校准和双凸压缩传感在并行 MRI 中的应用
  • DOI:
    10.48550/arxiv.2401.10400
    10.48550/arxiv.2401.10400
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Ni;Thomas Strohmer
    Yuan Ni;Thomas Strohmer
  • 通讯作者:
    Thomas Strohmer
    Thomas Strohmer
Optimal OFDM pulse and lattice design for doubly dispersive channels
双色散信道的最优 OFDM 脉冲和点阵设计
共 2 条
  • 1
前往

Thomas Strohmer的其他基金

Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
  • 批准号:
    2208356
    2208356
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Continuing Grant
    Continuing Grant
ATD: Multimode Machine Learning and Deep GeoNetworks for Anomaly Detection
ATD:用于异常检测的多模式机器学习和深度地理网络
  • 批准号:
    1737943
    1737943
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Standard Grant
    Standard Grant
Harmonic analysis, non-convex optimization, and large data sets
调和分析、非凸优化和大数据集
  • 批准号:
    1620455
    1620455
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Standard Grant
    Standard Grant
Methods and Algorithms from Harmonic Analysis for Threat Detection
用于威胁检测的谐波分析方法和算法
  • 批准号:
    1322393
    1322393
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Methods of Harmonic Analysis for Threat Detection
威胁检测的谐波分析方法
  • 批准号:
    1042939
    1042939
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Standard Grant
    Standard Grant
Computational Harmonic Analysis in Information Theory, Signal Processing, and Data Analysis
信息论、信号处理和数据分析中的计算谐波分析
  • 批准号:
    0811169
    0811169
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Computational Noncommutative Harmonic Analysis with Applications
计算非交换谐波分析及其应用
  • 批准号:
    0511461
    0511461
  • 财政年份:
    2005
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Applied Harmonic Analysis and Wireless Communications
应用谐波分析和无线通信
  • 批准号:
    0208568
    0208568
  • 财政年份:
    2002
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Numerical Methods for Digital Signal Reconstruction
数字信号重建的数值方法
  • 批准号:
    9973373
    9973373
  • 财政年份:
    1999
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

新冠肺炎大流行定量分析多层次框架:数学建模方法研究
  • 批准号:
    72171013
  • 批准年份:
    2021
  • 资助金额:
    200 万元
  • 项目类别:
    国际(地区)合作与交流项目
新冠肺炎大流行定量分析多层次框架:数学建模方法研究
  • 批准号:
    82161148011
  • 批准年份:
    2021
  • 资助金额:
    200.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
低维与高维数学形态学理论框架的统一及应用研究
  • 批准号:
    61871259
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于数学框架与融合框架理论的多源协同反无人机监测技术
  • 批准号:
    61771015
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于具结构性噪声去除的图像重建的研究
  • 批准号:
    11701388
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mathematical framework for novel non-porous viscous fingering instabilities
新型无孔粘性指法不稳定性的数学框架
  • 批准号:
    EP/Y021959/1
    EP/Y021959/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Research Grant
    Research Grant
Strategies to Achieve Viral Suppression for Youth with HIV (The SAVVY Study)
青少年艾滋病病毒感染者实现病毒抑制的策略(SAVVY 研究)
  • 批准号:
    10762109
    10762109
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
A new mathematical and philosophical framework of causation
因果关系的新数学和哲学框架
  • 批准号:
    23H00599
    23H00599
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别:
Research Project 2
研究项目2
  • 批准号:
    10738443
    10738443
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
    $ 35万
  • 项目类别: