SBIR Phase I: No-code electric grid analytics platform for predictive maintenance planning and emergency response
SBIR 第一阶段:用于预测性维护规划和应急响应的无代码电网分析平台
基本信息
- 批准号:2136505
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is in helping in the design of a cost-effective resiliency strategy for defense against the impacts of climate change. Today, the U.S. experiences significantly more weather events imposing substantially more financial burden compared to 40 years ago. As climate change accelerates, communities will be forced to endure increased financial burdens protecting against and mitigating its impacts. Research carried out in this SBIR project is intended to help reduce these expenses. Utilities, cities, insurance companies, and municipalities are stakeholders in these resiliency efforts and will be looking for new tools to help mitigate the effects and reduce the costs of climate change. The research in this project will enable utilities to reduce resilience-related costs and reduce impact on businesses and local economies due to power outages. Such actions may benefit all communities, particularly poorer and marginal communities that often endure the worst impacts of climate change.This Small Business Innovation Research Phase I project aims to develop predictive analytics for tropical storms and wildfires and to integrate this functionality into a power grid analytics software platform. Three artificial intelligence/machine learning (AI/ML) tools will be implemented, qualitatively expanding on early prototypes: (1) in the satellite imagery (SI) domain, an optimized combination of deep-learning neural network (DLNN) techniques will be trained on large-scale satellite images, resulting in the world's first tree growth tracking and species identification tool; (2) a "Virtual Wind Tunnel" (VWT) will be augmented with computational fluid dynamics (CFD) and empirical physics modeling to estimate the probability of trees damaging power transmission assets during weather events forecast; and (3) towards a no-code user interface, existing natural language processing (NLP) will be expanded, with the goal of processing queries from engineers unfamiliar with AI/ML. Key questions addressed by the research include whether the software platform will be able to adapt to new utility customers and service areas without sacrificing performance, whether increased data resolution can be effectively leveraged to better predictive power, and whether the platform can continuously improve event prediction over time by learning from historical grid data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小企业创新研究 (SBIR) 第一阶段项目的更广泛影响/商业潜力在于帮助设计具有成本效益的弹性策略,以防御气候变化的影响。如今,与 40 年前相比,美国经历的天气事件明显增多,造成了更大的经济负担。随着气候变化的加速,社区将被迫承受日益增加的财务负担,以防范和减轻其影响。 SBIR 项目中进行的研究旨在帮助减少这些费用。公用事业公司、城市、保险公司和市政当局是这些抗灾努力的利益相关者,并将寻找新的工具来帮助减轻气候变化的影响并降低成本。该项目的研究将使公用事业公司能够降低与弹性相关的成本,并减少停电对企业和当地经济的影响。 此类行动可能会使所有社区受益,特别是经常遭受气候变化最严重影响的贫困和边缘社区。这个小型企业创新研究第一阶段项目旨在开发热带风暴和野火的预测分析,并将此功能集成到电网分析中软件平台。 将实施三种人工智能/机器学习(AI/ML)工具,对早期原型进行定性扩展:(1)在卫星图像(SI)领域,将训练深度学习神经网络(DLNN)技术的优化组合基于大规模卫星图像,产生了世界上第一个树木生长跟踪和物种识别工具; (2) “虚拟风洞”(VWT) 将通过计算流体动力学 (CFD) 和经验物理模型进行增强,以估计在天气事件预报期间树木损坏输电资产的概率; (3) 现有的自然语言处理 (NLP) 将扩展到无代码用户界面,目标是处理不熟悉 AI/ML 的工程师的查询。研究解决的关键问题包括软件平台是否能够在不牺牲性能的情况下适应新的公用事业客户和服务领域,是否可以有效地利用增加的数据分辨率来提高预测能力,以及平台是否可以持续改进事件预测。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sayonsom Chanda其他文献
Sayonsom Chanda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低碳环境下考虑阶段间运输混合流水车间成组调度的协同智能优化方法
- 批准号:72301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
马尾松和粘盖乳牛肝菌预共生阶段互作机制研究
- 批准号:32360372
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
SBIR Phase I: Super High Performance No-Code Platform
SBIR第一期:超高性能无代码平台
- 批准号:
2212675 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase II: Development and Design Verification of a Reusable, No-Touch Catheter System
SBIR 第二阶段:可重复使用的非接触式导管系统的开发和设计验证
- 批准号:
2147852 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
IGF::OT::IGF - DEDICATED PEDIATRIC CARDIAC MRI RECEIVE COILS SBIR PHASE II - RFP NO. PHS 2013-1 TOPIC NO. 075
IGF::OT::IGF - 专用儿科心脏 MRI 接收线圈 SBIR 第 II 期 - RFP 号
- 批准号:
9173505 - 财政年份:2015
- 资助金额:
$ 25.6万 - 项目类别:
SBIR Phase II: No Heat Spray Drying Technology
SBIR第二阶段:无热喷雾干燥技术
- 批准号:
1254328 - 财政年份:2013
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: No Heat Spray Drying Technology
SBIR 第一阶段:无热喷雾干燥技术
- 批准号:
1142550 - 财政年份:2012
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant