Computational Harmonic Analysis in Information Theory, Signal Processing, and Data Analysis

信息论、信号处理和数据分析中的计算谐波分析

基本信息

  • 批准号:
    0811169
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

In this research effort the investigator creates mathematical concepts and numerical methods for information technology, communications engineering, and data analysis. The investigator uses tools from pseudodifferential operator theory, time-frequency analysis, random matrix theory, and Banach algebra theory, yielding efficient numerical algorithms with rigorously-established properties under carefully stated conditions.Some concrete topics of this research effort are: (i) Development of a theoretical framework for key problems in classical and quantum information theory. Specifically, the investigator considers the channel capacity problem in time-varying communications and quantum communications;(ii) Sparse representations and compressed sensing in X-ray crystallography, communications, and radar. Initial steps toward building a framework for nonlinear compressed sensing; (iii) Noncommutative harmonic analysis and pseudodifferential operators from the point of view of computational efficiency and the development of fast algorithms.Particular attention is paid to spectral factorization for operators in a noncommutative setting, and their application in signal processing and wireless communications.Strong expectation for success of this project can be based on existing solid achievements by the investigator in each of the described areas.The research proposed in this effort is a marriage of several areas of cutting edge mathematics with state-of-the-art engineering, seeking to bring advanced techniques from abstract and applied harmonic analysis to communications engineering, signal processing, and data analysis in form of fast and efficient computational methods.By taking the modern harmonic analysis methodology into the engineering community this research activity will enable further advances and breakthroughs in important applications.At the same time it will stimulate new research areas in applied mathematics and pave the road for further interactions between applied mathematicians and engineers.The payoffs of this research effort for society at large are many, ranging from new information technology capabilities and sophisticated tools to deal with today's massive volumes of data.There are financial efficiencies to be gained by communications providers which will be accompanied by better and increased communications services for the public. Other potential benefits include improved methods for medical imaging and biomedical engineering.Beyond the project's broad technological impact, it serves as a model for the kind of cross-disciplinary activity critical for research and education at the mathematics/engineering frontier. Hence this research effort helps to train graduate students in mathematics to develop and enhance skills that are crucial and urgently needed in a high-tech oriented society.
在这项研究工作中,研究人员为信息技术,通信工程和数据分析创建了数学概念和数值方法。研究人员使用伪差异操作员理论,时频分析,随机矩阵理论和Banach代数理论的工具,在精心陈述的条件下具有严格确定的属性,得出有效的数值算法。这项研究工作的一种具体主题是:(i)(i)在类似和量子问题中的理论框架开发的构图。具体而言,研究人员考虑了随时间变化的通信和量子通信中的通道容量问题;(ii)X射线晶体学,通信和雷达中的稀疏表示和压缩感应。建立非线性压缩感应框架的初步步骤; (iii)从计算效率的角度来看和快速算法的发展,非共同的谐波分析和假数分化的运算符。在非交互环境中对运营商的频谱分解引起了特定的注意,以及他们在信号处理和无线沟通中的应用。基于现有的项目的努力。尖端数学几个领域与最先进的工程的婚姻,试图将高级技术从抽象和应用的谐波分析到通信工程,信号处理,信号处理和数据分析的形式,通过快速有效的计算方法形式。应用数学家和工程师之间的互动。这项研究工作的总体收益是许多人,从新的信息技术能力和复杂的工具到应对当今大量数据的相互作用,这些效率将由通信提供者所获得的财务效率,这些效率将伴随着更好的公众服务,并增加了公众的沟通服务。其他潜在的好处包括改进的医学成像和生物医学工程的方法。该项目的广泛技术影响,它是一种跨学科活动的模型,对于数学/工程领域的研究和教育至关重要。因此,这项研究工作有助于培训数学研究生,以发展和增强在面向高科技的社会中至关重要且急需的技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Thomas Strohmer其他文献

Auto-Calibration and Biconvex Compressive Sensing with Applications to Parallel MRI
自动校准和双凸压缩传感在并行 MRI 中的应用
  • DOI:
    10.48550/arxiv.2401.10400
    10.48550/arxiv.2401.10400
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Ni;Thomas Strohmer
    Yuan Ni;Thomas Strohmer
  • 通讯作者:
    Thomas Strohmer
    Thomas Strohmer
Optimal OFDM pulse and lattice design for doubly dispersive channels
双色散信道的最优 OFDM 脉冲和点阵设计
共 2 条
  • 1
前往

Thomas Strohmer的其他基金

Collaborative Research: Algorithms, Theory, and Validation of Deep Graph Learning with Limited Supervision: A Continuous Perspective
协作研究:有限监督下的深度图学习的算法、理论和验证:连续的视角
  • 批准号:
    2208356
    2208356
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Continuing Grant
    Continuing Grant
ATD: A Mathematical Framework for Generating Synthetic Data
ATD:生成综合数据的数学框架
  • 批准号:
    2027248
    2027248
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant
ATD: Multimode Machine Learning and Deep GeoNetworks for Anomaly Detection
ATD:用于异常检测的多模式机器学习和深度地理网络
  • 批准号:
    1737943
    1737943
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant
Harmonic analysis, non-convex optimization, and large data sets
调和分析、非凸优化和大数据集
  • 批准号:
    1620455
    1620455
  • 财政年份:
    2016
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant
Methods and Algorithms from Harmonic Analysis for Threat Detection
用于威胁检测的谐波分析方法和算法
  • 批准号:
    1322393
    1322393
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Methods of Harmonic Analysis for Threat Detection
威胁检测的谐波分析方法
  • 批准号:
    1042939
    1042939
  • 财政年份:
    2010
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant
Computational Noncommutative Harmonic Analysis with Applications
计算非交换谐波分析及其应用
  • 批准号:
    0511461
    0511461
  • 财政年份:
    2005
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Applied Harmonic Analysis and Wireless Communications
应用谐波分析和无线通信
  • 批准号:
    0208568
    0208568
  • 财政年份:
    2002
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Numerical Methods for Digital Signal Reconstruction
数字信号重建的数值方法
  • 批准号:
    9973373
    9973373
  • 财政年份:
    1999
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于声发射-微振动特性的谐波减速器耦合损伤机理及性能退化规律分析
  • 批准号:
    52375528
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于谐波潮流分析的高占比换流器电网振荡溯源与抑制理论
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
静电电子回旋谐波导致全球弥散极光电子沉降的定量分析研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于谐波潮流分析的高占比换流器电网振荡溯源与抑制理论
  • 批准号:
    52207099
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
静电电子回旋谐波导致全球弥散极光电子沉降的定量分析研究
  • 批准号:
    42204163
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205852
    2205852
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Topics in Abstract, Applied, and Computational Harmonic Analysis
合作研究:抽象、应用和计算谐波分析主题
  • 批准号:
    2205771
    2205771
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Computational Harmonic Analysis Approach to Active Learning
协作研究:主动学习的计算调和分析方法
  • 批准号:
    2012266
    2012266
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Computational Harmonic Analysis Approach to Active Learning
协作研究:主动学习的计算调和分析方法
  • 批准号:
    2012355
    2012355
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别:
    Standard Grant
    Standard Grant
Coupling Advanced Computational Analyses for Mammography and SHG Imaging for Early Detection of Breast Cancer Tissue Microenvironment Disruptions Accompanying Tumorigenesis
将乳房 X 线摄影和 SHG 成像的高级计算分析相结合,以早期检测伴随肿瘤发生的乳腺癌组织微环境破坏
  • 批准号:
    10046750
    10046750
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
    $ 42万
  • 项目类别: