W-HTF-RL: Collaborative Research: Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots

W-HTF-RL:协作研究:通过感知和自适应软可穿戴机器人改善上肢残疾的零售和仓库工人的未来

基本信息

  • 批准号:
    2026479
  • 负责人:
  • 金额:
    $ 89.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This project will investigate modeling, perception, and control of soft wearable robots to provide physical assistance and skill training for older workers and workers with physical disabilities in jobs involving picking, placing, and assembly tasks. If successful, the project will enhance their employment, inclusion, and integration in work that is relevant to retail, warehouse, and manufacturing. It is estimated that this technology can directly benefit nearly 20 million people in the U.S. with upper limb impairments due to neurological and musculoskeletal disorders. The long term goal of the project is to improve the quality of work, productivity, and employment of people with disabilities, who are the nation’s largest minority and untapped labor force. To do so, the project will deploy artificial intelligence-powered, soft assistive robots to support workers and understand the resulting impact on economics and policy making. The proposed work has the potential to contribute to national economic growth and health by broadening participation of people with disabilities in the workforce. The assessment of economic impacts will provide the first econometric data-driven understanding of the productivity and labor market effects of artificial intelligence- and robotics-driven augmentation, with a specific focus on the underrepresented population of individuals with disabilities. This project brings together multiple disciplines, including soft robotics, computer vision, learning and control, occupational therapy, worker training and labor economics. This convergent research team represents a collaboration with Rutgers New Jersey Medical School, New York University, and assistive device manufacturers. The team and project activities are structured to achieve multiple convergent goals and deliverables, including: 1) A model of interactions between a lightweight and complainant soft wearable robot with human workers; 2) An interactive visual perception framework that enables multimodal intention detection and action monitoring in a semantic 3D map of the dynamic workspace and provides in-context visual feedback for collaborative robot manipulation; 3) A framework for the transfer of demonstrated skills through cost function learning and model predictive control with perceptual feedback integration for online movement and impedance adaptation of exoskeletons; 4) Training programs for occupational therapists and people with upper-limb disabilities will entail a multi-pronged strategy to enhance awareness and knowledge regarding the scope and effectiveness of assistive robots and improve perception towards their use in collaborative workspaces; 5) Increased understanding the economics of assistive technologies using federal data on occupational ability requirements and then using these estimates in conjunction with productivity results on assistive technologies to construct a range of cost/benefit estimates of these technologies; and 6) An evidence-based policy approach that uses quantitative and qualitative data from field experiments, interviews, and focus groups with employers and employees to determine attitudes, barriers, and best practices for adoption and acceptance of assistive wearable technologies in the workplace. This project has been funded by the Future of Work at the Human-Technology Frontier cross-directorate program to promote deeper basic understanding of the interdependent human-technology partnership in work contexts by advancing design of intelligent work technologies that operate in harmony with human workers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究软体可穿戴机器人的建模、感知和控制,为老年工人和身体残疾的工人提供涉及拾取、放置和组装任务的身体帮助和技能培训。如果成功,该项目将改善他们的就业,据估计,这项技术可以直接惠及美国近 2000 万因神经和肌肉骨骼疾病而患有上肢损伤的人。项目是为了提高残疾人的工作质量、生产力和就业,残疾人是美国最大的少数民族和未开发的劳动力。为此,该项目将部署人工智能驱动的软辅助机器人来支持工人并了解由此产生的影响。拟议的工作有可能通过扩大残疾人在劳动力中的参与程度来促进国民经济增长和健康。对经济影响的评估将提供对生产力和劳动力的第一个计量经济数据驱动的理解。人工智能的市场影响该项目汇集了多个学科,包括软机器人、计算机视觉、学习和控制、职业治疗、工人培训和劳动经济学。与罗格斯新泽西医学院、纽约大学和辅助设备制造商合作,该团队和项目活动旨在实现多个趋同目标和可交付成果,包括:1)轻量级软可穿戴设备之间的交互模型。机器人与人类工人;2)交互式视觉感知框架,可在动态工作空间的语义 3D 地图中实现多模式意图检测和动作监控,并为协作机器人操作提供上下文视觉反馈;3)用于传输演示的框架;通过成本函数学习和模型预测控制以及在线运动和外骨骼阻抗适应的感知反馈集成来提高技能; 4) 针对职业治疗师和上肢残疾人的培训计划将需要采取多管齐下的策略来提高意识和能力;关于辅助机器人的范围和有效性的知识,并提高对其在协作工作空间中的使用的认识;5) 使用有关职业能力要求的联邦数据,然后将这些估计与辅助技术的生产力结果结合起来,加深对辅助技术经济学的理解;对这些技术的一系列成本/效益估计;以及 6) 基于证据的政策方法,使用来自现场实验、访谈和雇主和雇员焦点小组的定量和定性数据来确定采用的态度、障碍和最佳实践和接受辅助该项目由人类技术前沿跨部门计划的未来工作资助,旨在通过推进智能工作技术的设计,促进对工作环境中相互依赖的人类技术伙伴关系的更深入的基本理解。与人类工作者和谐相处。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Egocentric Prediction of Action Target in 3D
Fooling LiDAR Perception via Adversarial Trajectory Perturbation
High-Frequency Nonlinear Model Predictive Control of a Manipulator
机械手的高频非线性模型预测控制
Leveraging Forward Model Prediction Error for Learning Control
利用前向模型预测误差进行学习控制
On the Derivation of the Contact Dynamics in Arbitrary Frames: Application to Polishing with Talos
任意坐标系中接触动力学的推导:Talos 抛光的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen Feng其他文献

The genome-wide landscape of small insertion and deletion mutations in Monopterus albus
黄鳝小插入和缺失突变的全基因组景观
  • DOI:
    10.1016/j.jgg.2019.02.002
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Chen Feng;Lai Fengling;Luo Majing;Han Yu San;Cheng Hanhua;Zhou Rongjia
  • 通讯作者:
    Zhou Rongjia
Comparative Proteomic Analysis Provides New Insights Into Low Nitrogen-Promoted Primary Root Growth in Hexaploid Wheat
比较蛋白质组学分析为低氮促进六倍体小麦初生根生长提供了新的见解
  • DOI:
    10.3389/fpls.2019.00151
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Xu Yanhua;Ren Yongzhe;Li Jingjing;Li Le;Chen Shulin;Wang Zhiqiang;Xin Zeyu;Chen Feng;Lin Tongbao;Cui Dangqun;Tong Yiping
  • 通讯作者:
    Tong Yiping
Lateral vibration analysis of pre-bent pendulum bottom hole assembly used in air drilling
空气钻井预弯摆式井底钻具横向振动分析
  • DOI:
    10.1177/1077546317747778
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhang He;Di Qinfeng;Wang Wenchang;Chen Feng;Chen Wei
  • 通讯作者:
    Chen Wei
Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect
使用超连续谱进行飞秒光学克尔效应测量以消除非线性相干耦合效应
  • DOI:
    10.1088/2040-8978/14/4/045203
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Tong Junyi;Tan Wenjiang;Si Jinhai;Cui Wei;Yi Wenhui;Chen Feng;Hou Xun
  • 通讯作者:
    Hou Xun
Geosites in Karamay city, Xinjiang Uygur Autonomous Region, northwest China
位于中国西北部新疆维吾尔自治区克拉玛依市的地质遗迹
  • DOI:
    10.1007/s12371-019-00346-5
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Qiu Jun-Ting;Qiu Liang;Mu Hong-Xu;Yang Wen-Xin;Chen Feng;Yan Bo-Kun;Yu Jun-Chuan;Yang He-Ming
  • 通讯作者:
    Yang He-Ming

Chen Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen Feng', 18)}}的其他基金

CAREER: Robust and Collaborative Perception and Navigation for Construction Robots
职业:建筑机器人的稳健协作感知和导航
  • 批准号:
    2238968
  • 财政年份:
    2023
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Continuing Grant
SCC-CIVIC-FA Track A: Targeted Micro-retrofits based on Building Envelope Scans using Drones, GPR, and Deep Neural Networks
SCC-CIVIC-FA 轨道 A:基于使用无人机、探地雷达和深度神经网络进行建筑包络扫描的有针对性的微改造
  • 批准号:
    2322242
  • 财政年份:
    2023
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Full Building Scans for Targeted Micro-retrofits using Drones, Radars, and Deep Learning
SCC-CIVIC-PG 轨道 A:使用无人机、雷达和深度学习进行全面建筑扫描以进行有针对性的微型改造
  • 批准号:
    2228568
  • 财政年份:
    2022
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
I-Corps: Combining Traditional Building Inspection Sensors with Deep Learning and Robotics
I-Corps:将传统建筑检测传感器与深度学习和机器人技术相结合
  • 批准号:
    2232494
  • 财政年份:
    2022
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
CPS: Medium: Accurate and Efficient Collective Additive Manufacturing by Mobile Robots
CPS:中:移动机器人精确高效的集体增材制造
  • 批准号:
    1932187
  • 财政年份:
    2019
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant

相似国自然基金

泽蛙多肽RL-RF10促进缺损角化龈上皮再生作用及机制研究
  • 批准号:
    82360185
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
CBFB-MYH11融合基因上调IL1RL1介导inv(16)急性髓系白血病化疗耐药的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海洋微生物Gallaecimonas xiamenensis RL01对邻苯二甲酸酯的降解机理及关键酯酶研究
  • 批准号:
    31800109
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
分枝杆菌YC-RL4高效降解酞酸酯的遗传调控网络解析
  • 批准号:
    21876201
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326408
  • 财政年份:
    2023
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
  • 批准号:
    2326146
  • 财政年份:
    2023
  • 资助金额:
    $ 89.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了