SCC-CIVIC-PG Track A: Full Building Scans for Targeted Micro-retrofits using Drones, Radars, and Deep Learning

SCC-CIVIC-PG 轨道 A:使用无人机、雷达和深度学习进行全面建筑扫描以进行有针对性的微型改造

基本信息

  • 批准号:
    2228568
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Poor air and moisture sealing in building envelopes contribute to worse buildings emissions and occupant health outcomes. Finding moisture using thermal scans can be a laborious and environmentally constrained process. Our contribution in ground penetrating radar involves using machine learning to find anomalous areas of interest in radar scans. We will be able to find trapped and hidden moisture that is not detectable with current non destructive testing techniques. By partnering with the City of New York and NGOs like District 2030, this project will (a) research the applicability of radar scans on different types of building facades, (b) create real, actionable outcomes that will improve the quality of life for residents of disadvantaged communities in NYC by creating better buildings through improving building envelopes with targeted micro-retrofits, (c) create a product that is beneficial to the new construction, the existing construction, the building insurance, the property management, and the building engineering industries. This project will enhance US competitiveness, produce new products, bolster economic growth, and benefit society at large. The findings from this project have the potential to scale and produce similar positive outcomes across the nation.Poorly maintained building envelopes exacerbate building greenhouse gas emissions and cause quality of life problems. We propose a non-invasive integrated solution to locate and document moisture intrusion, thermal bridges, and air leaks to diagnose building envelope issues. The system identifies and quantifies common envelope defects and applies long-wave radar and deep learning to detect hidden deep moisture penetration and other major envelope defects. This project aims to perform inspections on public and private buildings in New York City, specifically in low-income communities. We will work with community organizations and local government departments already carrying out this work and enhance their efforts through AI and robotics technologies being actively developed in the PI/Co-PI’s labs. This project will improve the quality of life for residents in low-income communities by creating more comfortable and usable buildings. With this system, it is possible to perform low-cost, targeted micro-retrofits to address envelope issues. We will either address building envelope issues directly through low-cost targeted micro-retrofits or we will propose a list of retrofits to our partners when that is not possible. This project is in response to the Civic Innovation Challenge program—Track A. Living in a changing climate: pre-disaster action around adaptation, resilience, and mitigation—and is a collaboration between NSF, the Department of Homeland Security, and the Department of Energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建筑围护结构中的空气和湿气密封不良会导致建筑物排放和居住者健康状况恶化。使用热扫描查找湿气可能是一个费力且受环境限制的过程,我们在探地雷达方面的贡献涉及使用机器学习来查找雷达感兴趣的异常区域。通过与纽约市和 District 2030 等非政府组织合作,我们将能够发现当前无损检测技术无法检测到的残留和隐藏的水分,该项目将 (a) 研究其适用性。对不同类型的建筑立面进行雷达扫描,(b) 创造真实、可行的结果,通过有针对性的微改造改善建筑围护结构,创造更好的建筑,从而提高纽约市弱势社区居民的生活质量,(c) 创造一项有利于新建建筑、现有建筑、建筑保险、物业管理和建筑工程行业的产品。该项目将增强美国的竞争力,促进新产品的发展,促进经济增长,造福整个社会。从这个项目有潜力规模化并在全国范围内产生类似的积极成果。维护不善的建筑物会加剧建筑物温室气体排放并导致生活质量问题。我们提出了一种非侵入性集成解决方案来定位和记录湿气侵入、热桥和空气泄漏,以诊断建筑物。该系统识别和量化常见的围护结构缺陷,并应用长波雷达和深度学习来检测隐藏的深层湿气渗透和其他主要围护结构缺陷。该项目旨在对纽约市的公共和私人建筑进行检查。我们将为低收入社区工作。社区组织和地方政府部门已经开展了这项工作,并通过 PI/Co-PI 实验室积极开发的人工智能和机器人技术加大力度。该项目将通过创建低收入社区居民的生活质量。借助该系统,可以进行低成本、有针对性的微型改造来解决围护结构问题,我们将直接通过低成本提出有针对性的微型改造来解决建筑围护结构问题,或者我们将列出清单。对我们的改造该项目是为了响应公民创新挑战计划——A.生活在不断变化的气候中:围绕适应、复原力和缓解的灾前行动——并且是 NSF 与美国农业部之间的合作项目。国土安全部和能源部。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeepGPR: Learning to Identify Moisture Defects in Building Envelope Assemblies from Ground Penetrating Radar
DeepGPR:学习通过探地雷达识别建筑围护结构组件中的潮湿缺陷
Marker-based Extrinsic Calibration for Thermal-RGB Camera Pair with Different Calibration Board Materials
具有不同校准板材料的热 RGB 相机对基于标记的外部校准
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen Feng其他文献

The genome-wide landscape of small insertion and deletion mutations in Monopterus albus
黄鳝小插入和缺失突变的全基因组景观
  • DOI:
    10.1016/j.jgg.2019.02.002
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Chen Feng;Lai Fengling;Luo Majing;Han Yu San;Cheng Hanhua;Zhou Rongjia
  • 通讯作者:
    Zhou Rongjia
Comparative Proteomic Analysis Provides New Insights Into Low Nitrogen-Promoted Primary Root Growth in Hexaploid Wheat
比较蛋白质组学分析为低氮促进六倍体小麦初生根生长提供了新的见解
  • DOI:
    10.3389/fpls.2019.00151
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Xu Yanhua;Ren Yongzhe;Li Jingjing;Li Le;Chen Shulin;Wang Zhiqiang;Xin Zeyu;Chen Feng;Lin Tongbao;Cui Dangqun;Tong Yiping
  • 通讯作者:
    Tong Yiping
Lateral vibration analysis of pre-bent pendulum bottom hole assembly used in air drilling
空气钻井预弯摆式井底钻具横向振动分析
  • DOI:
    10.1177/1077546317747778
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhang He;Di Qinfeng;Wang Wenchang;Chen Feng;Chen Wei
  • 通讯作者:
    Chen Wei
Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect
使用超连续谱进行飞秒光学克尔效应测量以消除非线性相干耦合效应
  • DOI:
    10.1088/2040-8978/14/4/045203
  • 发表时间:
    2012-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Tong Junyi;Tan Wenjiang;Si Jinhai;Cui Wei;Yi Wenhui;Chen Feng;Hou Xun
  • 通讯作者:
    Hou Xun
Geosites in Karamay city, Xinjiang Uygur Autonomous Region, northwest China
位于中国西北部新疆维吾尔自治区克拉玛依市的地质遗迹
  • DOI:
    10.1007/s12371-019-00346-5
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Qiu Jun-Ting;Qiu Liang;Mu Hong-Xu;Yang Wen-Xin;Chen Feng;Yan Bo-Kun;Yu Jun-Chuan;Yang He-Ming
  • 通讯作者:
    Yang He-Ming

Chen Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen Feng', 18)}}的其他基金

CAREER: Robust and Collaborative Perception and Navigation for Construction Robots
职业:建筑机器人的稳健协作感知和导航
  • 批准号:
    2238968
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
SCC-CIVIC-FA Track A: Targeted Micro-retrofits based on Building Envelope Scans using Drones, GPR, and Deep Neural Networks
SCC-CIVIC-FA 轨道 A:基于使用无人机、探地雷达和深度神经网络进行建筑包络扫描的有针对性的微改造
  • 批准号:
    2322242
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Combining Traditional Building Inspection Sensors with Deep Learning and Robotics
I-Corps:将传统建筑检测传感器与深度学习和机器人技术相结合
  • 批准号:
    2232494
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
W-HTF-RL: Collaborative Research: Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots
W-HTF-RL:协作研究:通过感知和自适应软可穿戴机器人改善上肢残疾的零售和仓库工人的未来
  • 批准号:
    2026479
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CPS: Medium: Accurate and Efficient Collective Additive Manufacturing by Mobile Robots
CPS:中:移动机器人精确高效的集体增材制造
  • 批准号:
    1932187
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

SCC-PG: Trust, transparency and technology: Building digital equity through a civic digital commons
SCC-PG:信任、透明度和技术:通过公民数字共享建立数字公平
  • 批准号:
    2234081
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Novel Fuel-Flexible Combustion to Enable Ultra-Clean and Efficient Waste-to-Renewable Energy in Changing Climate
SCC-CIVIC-PG 轨道 A:新型燃料灵活燃烧,在不断变化的气候中实现超清洁、高效的废物转化为可再生能源
  • 批准号:
    2228311
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Youth-Centered Civic Technology and Citizen Science for Improving Community Heat Resilience Infrastructure
SCC-CIVIC-PG 轨道 A:以青年为中心的公民技术和公民科学,用于改善社区耐热基础设施
  • 批准号:
    2228553
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Ocean Model Infrastructure For A Resilient Coastal City
SCC-CIVIC-PG 轨道 A:弹性沿海城市的海洋模型基础设施
  • 批准号:
    2228535
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: A Coordinated Food Hub Network and Farm to Institution Program: Building Bridges between Small Local Farmers and Institutions in New York State Capital Region
SCC-CIVIC-PG 轨道 B:协调的食品中心网络和农场到机构计划:在纽约州首府地区当地小农民和机构之间架起桥梁
  • 批准号:
    2228544
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了