ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions

ISS:微重力和正常重力条件下导电高温复合材料的合成

基本信息

项目摘要

With the fast advancement of space exploration, conducting materials research in space is becoming mainstream. At the same time, novel two-dimensional materials and polymer derived high temperature ceramics have captured the attention of the materials community. In this research project, two dimensional MXene will be incorporated into a silicon oxycarbide matrix to generate new materials, both on Earth and at the International Space Station. The high temperature evolution behaviors of two-dimensional materials and polymer to ceramic conversion under microgravity conditions will be systematically compared with the processes on Earth. These materials are expected to have high oxidation resistance, excellent electrical conductivity, and low density. They should also have great synergistic potentials for toughness, strength, and high temperature stability. The composites can be made into almost any shape (bulk, coating, discrete feature, et cetera) and size (nano- to macro-) based on application needs. In addition, these materials can easily produce complex shape, thin-wall, or freeform components with lightweight and functional capabilities in high temperature environments. This research will usher in a new generation of advanced materials which have great potential to be used as heat exchangers, electric systems, catalyst support, energy storage, electrodes, nano-devices, and microsystems. Ultimately, project results will lead to new applications benefiting space science and life on Earth. Both graduate and undergraduate students will be involved in the research project. The PI will expand current activities to Eastern Virginia while continuing efforts with different summer camps on campus. In addition, the PI will expand outreach efforts to the Western Virginia Science Museum to stimulate the interest of females and minorities in science and engineering.This research project will advance understanding of atomic- and nano-level species interactions under different gravitational conditions in order to explore a new class of high temperature stable and electrically conductive materials. The high temperature composites will include both dense and porous microstructures but the methodology developed will be applicable to a wide range of high temperature materials derived from 2D additives and polymer precursors. This research project is expected to develop new theories, provide new knowledge, and offer novel methods in atomic level design and thermodynamic prediction of polymer derived ceramics. Results from this project will open new opportunities for using microgravity to understand and create novel high temperature materials. The team will conduct the research using four approaches. First, using MXene exfoliation and surface functionalization, pre-pyrolysis at 500-700°C will be conducted in order to provide controlled states for microgravity and Earth gravity studies. Second, different atmosphere pyrolysis will be conducted on Earth and under microgravity to understand the atmosphere and gas release effects on new phase formation. Third, theoretical thermodynamic calculation and experimental pyrolysis studies will be combined in order to explore the fundamental interfacial interaction and phase evolution processes. Finally, gravitational effects on 2D MXene deformation, stacking, and chemical interaction with silicon oxycarbide during pyrolysis will be comprehensively investigated; the phase and structural evolution of the porous systems will be correlated with pore stability and shrinkage/collapse under different gravity conditions. The educational component is training of multiple graduate and undergraduate students, with a focus on women and minorities. The PI will expand current activities to Eastern Virginia while continuing efforts with different summer camps on campus. In addition, the PI will expand outreach efforts to the Western Virginia Science Museum to stimulate the interest of females and minorities in science and engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着太空探索的快速进展,在太空进行材料研究正成为主流,同时,新型二维材料和聚合物衍生的高温陶瓷引起了材料界的关注,在这个研究项目中,二维MXene。将被纳入碳氧化硅基体中以在地球和国际空间站上生成新材料。微重力条件下二维材料和聚合物到陶瓷转化的高温演化行为将与地球上的过程进行系统比较。 .这些材料预计具有高抗氧化性、优异的导电性和低密度,它们还应该在韧性、强度和高温稳定性方面具有巨大的协同潜力,可以制成几乎任何形状(块状、涂层、离散特征等)。此外,这些材料可以根据应用需求轻松生产具有轻质和功能性的复杂形状、薄壁或自由形状组件,这项研究将迎来新一代。先进的这些材料在热交换器、电力系统、催化剂载体、能量存储、电极、纳米器件和微系统方面具有巨大的潜力,最终,项目成果将带来有利于空间科学和地球生命的新应用。本科生将参与该研究项目。 PI 将把目前的活动扩展到东弗吉尼亚州,同时继续在校园内举办不同的夏令营。此外,PI 还将把外展工作扩大到西弗吉尼亚州科学博物馆,以激发女性的兴趣。和科学与工程领域的少数群体。这个研究项目将加深对不同重力条件下原子和纳米级物种相互作用的理解,以探索新型高温稳定和导电材料,高温复合材料将包括致密和多孔微观结构,但所开发的方法将适用。该研究项目预计将开发新理论,提供新知识,并为聚合物衍生陶瓷的原子级设计和热力学预测提供新方法。将要为利用微重力来理解和创造新型高温材料开辟了新的机会,该团队将使用四种方法进行研究,首先,使用 MXene 剥离和表面功能化,在 500-700°C 下进行预热解,以提供第二,在地球上和微重力下进行不同大气热解,以了解大气和气体释放对新相形成的影响。第三,理论热力学计算和实验。最后,将综合研究热解过程中二维 MXene 变形、堆积以及与碳氧化硅的化学相互作用的重力效应,以及多孔材料的相和结构演化。系统将与不同重力条件下的孔隙稳定性和收缩/塌陷相关。教育部分是对多名研究生和本科生的培训,重点是女性和少数族裔。此外,PI 将扩大到西弗吉尼亚科学博物馆的外展工作,以激发女性和少数族裔对科学和工程的兴趣。该奖项反映了 NSF 的法定使命和使命。通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A materials informatics approach for composition and property prediction of polymer-derived silicon oxycarbides
  • DOI:
    10.1016/j.mtadv.2023.100384
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Yi Je Cho;K. Lu
  • 通讯作者:
    Yi Je Cho;K. Lu
Structural evolution and electrical conductivity of Ti3C2-SiOC ceramics
  • DOI:
    10.1016/j.mseb.2022.115954
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanjay Kumar Devendhar Singh;K. Lu
  • 通讯作者:
    Sanjay Kumar Devendhar Singh;K. Lu
Enhancing organosilicon polymer-derived ceramic properties
  • DOI:
    10.1063/5.0085844
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Patricia A. Loughney;S. B. Mujib;Timothy L. Pruyn;Gurpreet Singh;K. Lu;V. Doan-Nguyen
  • 通讯作者:
    Patricia A. Loughney;S. B. Mujib;Timothy L. Pruyn;Gurpreet Singh;K. Lu;V. Doan-Nguyen
New insight into SiOC atomic structure evolution during early stage of pyrolysis
热解早期阶段SiOC原子结构演化的新见解
Understanding SiOC atomic structures via synchrotron X-ray and reactive force field potential studies
  • DOI:
    10.1016/j.mtchem.2023.101429
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    H. Chaney;Y. Zhou;K. Lu
  • 通讯作者:
    H. Chaney;Y. Zhou;K. Lu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathy Lu其他文献

Multiwall Carbon Nanotube and TiO2 Sol Assembly
多壁碳纳米管和TiO2溶胶组装
Fate of Polymer Derived SiC Monolith at Different High Temperatures
聚合物衍生的 SiC 整体材料在不同高温下的命运
Surface patterning nanoparticle-based arrays
基于纳米粒子的表面图案化阵列
  • DOI:
    10.1007/s10853-009-3930-9
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Junmin Qian;Kathy Lu;Chase Hammond
  • 通讯作者:
    Chase Hammond

Kathy Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathy Lu', 18)}}的其他基金

ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions
ISS:微重力和正常重力条件下导电高温复合材料的合成
  • 批准号:
    2422018
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Additive Manufacturing of Load and Energy Absorbing Materials through an Integrated Experimental and Modelling Approach
通过综合实验和建模方法增材制造负载和能量吸收材料
  • 批准号:
    1853893
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Lithographic Patterning of Co-Dispersed Nanomaterials for Device Applications
用于设备应用的共分散纳米材料的光刻图案
  • 批准号:
    1661564
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Design of Ultrahigh Surface Area Conductive Materials
合作研究:超高比表面积导电材料集成设计
  • 批准号:
    1634325
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Nanoscale Sintering Understanding
纳米级烧结的理解
  • 批准号:
    1461516
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Multi-Scale Study of Nanoparticle Sintering
纳米颗粒烧结的多尺度研究
  • 批准号:
    0969888
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Template-Assisted Nanoparticle Processing
模板辅助纳米颗粒加工
  • 批准号:
    0824741
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
GOALI: Nanodesign and Efficient Processing of Boron Carbide Nanocomposites
目标:碳化硼纳米复合材料的纳米设计和高效加工
  • 批准号:
    0620621
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

表面接枝改性制备CaO-B2O3-C前驱体及感应加热合成CaB6的机理研究
  • 批准号:
    52362008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
高效稳定的多孔配位聚合物膜的研制及电合成过氧化氢
  • 批准号:
    22375223
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
碳纳米管限域的钴基费托合成催化剂的设计及其催化性能研究
  • 批准号:
    22362030
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
  • 批准号:
    32371366
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
抑制MRPS21协同Bcl-xL抑制剂诱导前列腺癌细胞合成致死的分子机制研究
  • 批准号:
    82303033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on Electrically Driven Random Lasers Using Hydrothermal Synthesis Method
水热合成法电驱动随机激光器的研究
  • 批准号:
    23H01825
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions
ISS:微重力和正常重力条件下导电高温复合材料的合成
  • 批准号:
    2422018
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Electrically Driven C-H Functionalization with CuII/CuIII Redox Catalysts
使用 CuII/CuIII 氧化还原催化剂进行电驱动 C-H 官能化
  • 批准号:
    10419770
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Electrically Driven C-H Functionalization with CuII/CuIII Redox Catalysts
使用 CuII/CuIII 氧化还原催化剂进行电驱动 C-H 官能化
  • 批准号:
    10629279
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
The electrically-powered synthesis of ethylene for the chemical industry
化学工业乙烯电动合成
  • 批准号:
    515310-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了