Additive Manufacturing of Load and Energy Absorbing Materials through an Integrated Experimental and Modelling Approach

通过综合实验和建模方法增材制造负载和能量吸收材料

基本信息

项目摘要

This multi-PI advanced manufacturing project aims to understand and explore phase transformation mechanisms of zirconia ceramic in copper and steel metal matrices. Zirconia can convert large mechanical strain into heat recoverably but this potential has not been explored for metal matrix composites. In addition, the project studies a new friction-based additive manufacturing process, MELD, with the goal of developing new energy- and stress-absorbing components. Multi-scale computer modeling of the corresponding materials created through MELD will be carried out. Simulation results will be compared with experimental data for improved understanding of microstructure evolution during the MELD manufacturing process and the component behaviors during infrastructure use. The integrated understanding from the experimental and modeling efforts is expected to bring in new capabilities for infrastructure improvement and repair. Because of its broad applicability, this manufacturing process can directly impact the ability of buildings, aircraft, and automobiles to withstand demanding loads, and therefore directly impacts the economic welfare and national security of the United States. The knowledge generated will be widely disseminated to the scientific community, to the general public, and to K-12 students. We will also enrich our current curricula by bringing the most relevant technical and societal issues to classrooms/labs. The PI/Co-PIs will lead extensive outreach efforts to increase the enrollment of females and minorities in STEM. Specific efforts include participation in summer camps that focus on underrepresented students, collaboration with a minority serving institution, and outreach activities through Science Museum of Western Virginia.This research will study a novel type of metal matrix composites by leveraging a unique stress and energy dissipation mechanism based on zirconia martensitic phase transformation. The fundamentals of a new and scalable additive manufacturing process--MELD will be investigated, and multi-scale and multi-physics simulations for enhanced microstructure-property understanding and prediction will be integrated. The theoretical work will be correlated with both in-situ and ex-situ microstructure characterization and property evaluation results. The research approaches are: 1) study stress/energy dissipation mechanisms in metal matrix composites to improve the resilience of structures at different length scales, 2) understand the influence of the composite synthesis and additive deposition variables, and develop fundamental understanding of the heat/mass flow processes during MELD in order to create new structures and enable new properties, 3) simulate mass and heat flows during MELD and predict microstructure-derived performance at multi-scales under cyclic loading and energy shock conditions, and 4) build quantitative relations between the stress/energy absorbing capabilities and zirconia-enhanced metal composite synthesis and MELD manufacturing. This project will provide detailed understanding to the unique and reversible phase transformation of zirconia in metal matrices, especially regarding its functions in energy and stress absorption. It will also offer fundamental knowledge in MELD, an exciting and scalable additive manufacturing process based on friction stir methods, and create near net shape and fully-dense metal matrix composites. The research will also advance multi-scale, multi-physics simulations of mass flow and heat flow during the MELD process and after the MELD process while providing insight into the structural behaviors of the MELD-enabled composites under complex loading conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个多PI高级制造项目旨在了解和探索氧化陶瓷铜和钢金属矩阵的相变机制。氧化锆可以将大型的机械应变转换为热量,但对于金属基质复合材料,尚未探索这种潜力。此外,该项目研究了一个新的基于摩擦的添加剂制造过程,旨在开发新的能量和压力减轻压力的组件。将进行通过MELD创建的相应材料的多尺度计算机建模。将将仿真结果与实验数据进行比较,以改善对MELD制造过程中微观结构演变的了解以及基础设施使用过程中的组件行为。预计实验和建模工作的综合理解将带来新的基础设施改进和维修能力。由于其广泛的适用性,这种制造过程可以直接影响建筑物,飞机和汽车承受要求负载的能力,因此直接影响了美国的经济福利和国家安全。产生的知识将被广泛传播给科学界,公众和K-12学生。我们还将通过将最相关的技术和社会问题带入教室/实验室来丰富当前的课程。 PI/Co-Pis将领导广泛的外展工作,以增加女性和少数群体的入学人数。具体的努力包括参加专注于代表性不足的学生的夏令营,与少数派服务机构的合作以及通过西弗吉尼亚州科学博物馆的宣传活动。这项研究将通过利用独特的压力和能量耗散机制来研究一种新型的金属基质复合材料基于氧化锆马氏体相变。将研究一种新的且可扩展的添加剂制造过程的基本原理 - 将集成多尺度和多物理模拟,以增强微观结构 - 统计的理解和预测。理论工作将与原位和原位微观结构表征和属性评估结果相关。研究方法是:1)在金属基质复合材料中研究应力/能量耗散机制,以提高不同长度尺度的结构的弹性,2)了解复合材料合成和加性沉积变量的影响,并发展对热/的基本了解/键入过程中的质量流动过程为了创建新的结构并启用新的特性,3)模拟键盘期间的质量和热量流,并在循环载荷和能量冲击条件下预测多尺度的微结构衍生的性能,以及4)建立定量关系应力/能量吸收能力以及氧化锆增强的金属复合合成和融合制造。该项目将为金属矩阵中氧化锆的独特和可逆的相变提供详细的理解,尤其是关于其在能量和应力吸收方面的功能。它还将在Meld中提供基本知识,这是一种基于摩擦搅拌方法的令人兴奋且可扩展的添加剂制造过程,并创建近乎净形状和完全密集的金属基质复合材料。这项研究还将推进在MELD过程中和MELD过程中的质量流量和热流的多尺度多物理模拟,同时在复杂的负载条件下洞悉MELD启用的组合材料的结构性行为。这反映了NSF的奖项。法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准来评估的值得支持的。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Viewpoint: Tuning the Martensitic Transformation Mode in Shape Memory Ceramics via Mesostructure and Microstructure Design
  • DOI:
    10.1007/s40830-023-00430-4
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Donald Erb;H. Rauch;Kendall P. Knight;Hang Z. Yu
  • 通讯作者:
    Donald Erb;H. Rauch;Kendall P. Knight;Hang Z. Yu
Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition
  • DOI:
    10.1016/j.addma.2020.101293
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Perry, Mackenzie E. J.;Griffiths, R. Joey;Yu, Hang Z.
  • 通讯作者:
    Yu, Hang Z.
Additive Manufacturing of Yttrium-Stabilized Tetragonal Zirconia: Progressive Wall Collapse, Martensitic Transformation, and Energy Dissipation in Micro-Honeycombs
  • DOI:
    10.1016/j.addma.2022.102692
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    11
  • 作者:
    H. Rauch;Huachen Cui;Kendall P. Knight;R. J. Griffiths;Jake K. Yoder;X. Zheng;Hang Z. Yu
  • 通讯作者:
    H. Rauch;Huachen Cui;Kendall P. Knight;R. J. Griffiths;Jake K. Yoder;X. Zheng;Hang Z. Yu
Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages
  • DOI:
    10.1016/j.mtla.2020.100967
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Griffiths, R. Joey;Garcia, David;Yu, Hang Z.
  • 通讯作者:
    Yu, Hang Z.
In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si
  • DOI:
    10.1016/j.addma.2020.101386
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Garcia, David;Hartley, W. Douglas;Yu, Hang Z.
  • 通讯作者:
    Yu, Hang Z.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathy Lu其他文献

Multiwall Carbon Nanotube and TiO2 Sol Assembly
多壁碳纳米管和TiO2溶胶组装
Fate of Polymer Derived SiC Monolith at Different High Temperatures
聚合物衍生的 SiC 整体材料在不同高温下的命运
Surface patterning nanoparticle-based arrays
基于纳米粒子的表面图案化阵列
  • DOI:
    10.1007/s10853-009-3930-9
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Junmin Qian;Kathy Lu;Chase Hammond
  • 通讯作者:
    Chase Hammond

Kathy Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathy Lu', 18)}}的其他基金

ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions
ISS:微重力和正常重力条件下导电高温复合材料的合成
  • 批准号:
    2422018
  • 财政年份:
    2023
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions
ISS:微重力和正常重力条件下导电高温复合材料的合成
  • 批准号:
    2024546
  • 财政年份:
    2020
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
Lithographic Patterning of Co-Dispersed Nanomaterials for Device Applications
用于设备应用的共分散纳米材料的光刻图案
  • 批准号:
    1661564
  • 财政年份:
    2017
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Design of Ultrahigh Surface Area Conductive Materials
合作研究:超高比表面积导电材料集成设计
  • 批准号:
    1634325
  • 财政年份:
    2016
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
Nanoscale Sintering Understanding
纳米级烧结的理解
  • 批准号:
    1461516
  • 财政年份:
    2015
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
Multi-Scale Study of Nanoparticle Sintering
纳米颗粒烧结的多尺度研究
  • 批准号:
    0969888
  • 财政年份:
    2010
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
Template-Assisted Nanoparticle Processing
模板辅助纳米颗粒加工
  • 批准号:
    0824741
  • 财政年份:
    2008
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
GOALI: Nanodesign and Efficient Processing of Boron Carbide Nanocomposites
目标:碳化硼纳米复合材料的纳米设计和高效加工
  • 批准号:
    0620621
  • 财政年份:
    2006
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant

相似国自然基金

数字制造业集聚对供应链中断的缓冲机制研究
  • 批准号:
    72303034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
创新链管理视角下高端装备制造业开放创新的风险识别、评估与治理对策研究
  • 批准号:
    72304262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数字技术驱动制造业低碳转型的失效机制与破解路径:基于数字技术承接力的视角
  • 批准号:
    72304087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国西部城市不同所有制制造业企业的全球主动嵌入:全球网络、行业差异和安全评估
  • 批准号:
    42371198
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
复合系统视阈下制造业绿色转型的演化机理、绩效评价及调控策略研究
  • 批准号:
    72373138
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目

相似海外基金

Ultra-long-acting Biodegradable and Tunable Polymeric Solid Implant for HIV Treatment Maintenance
用于维持艾滋病毒治疗的超长效可生物降解和可调聚合物固体植入物
  • 批准号:
    10759149
  • 财政年份:
    2023
  • 资助金额:
    $ 60.42万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10668162
  • 财政年份:
    2023
  • 资助金额:
    $ 60.42万
  • 项目类别:
Flu Vaccine Production Using a Novel Pandemic Response and Prevention Manufacturing Method
使用新型流行病应对和预防制造方法生产流感疫苗
  • 批准号:
    10698431
  • 财政年份:
    2023
  • 资助金额:
    $ 60.42万
  • 项目类别:
GMP manufacturing and IND Filing of IN-002, a potent inhaled muco-trapping antibody therapy for Respiratory Syncytial Virus
IN-002 的 GMP 生产和 IND 备案,这是一种针对呼吸道合胞病毒的有效吸入粘液捕获抗体疗法
  • 批准号:
    10761398
  • 财政年份:
    2023
  • 资助金额:
    $ 60.42万
  • 项目类别:
CollaLink: Guided-regenerative Scaffold for Augmentation of Anterior Cruciate Ligament Repair
CollaLink:用于增强前十字韧带修复的引导再生支架
  • 批准号:
    10760639
  • 财政年份:
    2023
  • 资助金额:
    $ 60.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了