Nanoscale Sintering Understanding

纳米级烧结的理解

基本信息

项目摘要

Sintering is an important materials consolidation and densification strategy. It is used to make components with complex shapes, in near net-shapes, and with relatively simple equipment. Also, different compositions and structures can be flexibly tailored using sintering. However, sintering is also a complex process. With the progress of nanoparticle-based materials, many conventional sintering theories cannot predict new sintering behaviors; relying on existing sintering knowledge to guide nanoparticle-based material processing has led to numerous failures and contradictory results. This award supports fundamental research to build our understanding of the sintering process, to test the scalability of sintering equations from nanometers up, and to quantify the function of pores in nanostructure evolution and shrinkage. Successful nano-sintering represents exciting possibilities in improved structural, electrical, optical, and other functional properties and unprecedented nanostructures. The application areas are numerous, including energy storage/conversion, nanophotonic devices, microfluidic devices, catalysts, microreactor devices, and optical components. This program also includes extensive outreach activities (such as HBCU, local schools, camps) to increase the participation of underrepresented groups in engineering, especially in the area of nanomaterials. This award supports research to build direct and quantitative sintering shrinkage-nanostructure evolution correlations, test the scalability of sintering equations from nanoscale and up, and quantify the function of pores in nanostructure evolution and shrinkage. There are three key components to this research. The first is to demonstrate that below a critical density, shrinkage extrapolation from grain neck size is dependent on coarsening-induced grain-reconfiguration; microstructure scalability is only valid for homogenous microstructures. The second is to show that above the critical density, pore size, distribution, and shape are critical factors for decoupling grain boundary diffusion from grain boundary migration and 3D microstructure reconstruction is a unique technique to provide such quantitative data. The third component is to illustrate that sintering of particle packing in unusual configurations is dependent on the balance between packing structures and diffusion mechanisms. The research will provide the much needed linkage between nanoparticle arrangement, microstructural evolution, and shrinkage by using small features that can track individual to multiple nanoparticles and reconstructing 3D nanostructures. The sintering knowledge gained will provide not only effective solutions to nanoparticle-based sintering but also never-before conduits for net-shape sintering, novel nanostructures, and a vast array of complex material design capabilities.
烧结是一种重要的材料固结和致密化策略。它用于用相对简单的设备制造形状复杂、近净形状的部件。此外,可以使用烧结灵活定制不同的成分和结构。然而,烧结也是一个复杂的过程。随着纳米颗粒材料的进步,许多传统的烧结理论无法预测新的烧结行为;依靠现有的烧结知识来指导基于纳米粒子的材料加工已经导致了许多失败和矛盾的结果。该奖项支持基础研究,以加深我们对烧结过程的理解,测试纳米级以上烧结方程的可扩展性,并量化纳米结构演变和收缩中孔隙的功能。成功的纳米烧结代表了改善结构、电学、光学和其他功能特性以及前所未有的纳米结构的令人兴奋的可能性。应用领域众多,包括能量存储/转换、纳米光子器件、微流体器件、催化剂、微反应器器件和光学元件。该计划还包括广泛的外展活动(例如 HBCU、当地学校、营地),以增加代表性不足的群体在工程领域的参与,特别是在纳米材料领域。该奖项支持建立直接和定量的烧结收缩与纳米结构演化相关性的研究,测试纳米级及以上烧结方程的可扩展性,并量化纳米结构演化和收缩中孔隙的功能。这项研究由三个关键组成部分组成。首先是证明在临界密度以下,从晶颈尺寸推断的收缩取决于粗化引起的晶粒重构;微观结构可扩展性仅对均质微观结构有效。第二个目的是表明,在临界密度之上,孔径、分布和形状是将晶界扩散与晶界迁移解耦的关键因素,而 3D 微观结构重建是提供此类定量数据的独特技术。第三个组成部分是为了说明异常结构中颗粒堆积的烧结取决于堆积结构和扩散机制之间的平衡。该研究将通过使用可以跟踪单个到多个纳米颗粒并重建 3D 纳米结构的小特征,提供纳米颗粒排列、微观结构演化和收缩之间急需的联系。获得的烧结知识不仅将为基于纳米颗粒的烧结提供有效的解决方案,而且还将为净形状烧结、新型纳米结构和大量复杂材料设计能力提供前所未有的途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kathy Lu其他文献

Multiwall Carbon Nanotube and TiO2 Sol Assembly
多壁碳纳米管和TiO2溶胶组装
Fate of Polymer Derived SiC Monolith at Different High Temperatures
聚合物衍生的 SiC 整体材料在不同高温下的命运
Surface patterning nanoparticle-based arrays
基于纳米粒子的表面图案化阵列
  • DOI:
    10.1007/s10853-009-3930-9
  • 发表时间:
    2010-02
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Junmin Qian;Kathy Lu;Chase Hammond
  • 通讯作者:
    Chase Hammond

Kathy Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kathy Lu', 18)}}的其他基金

ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions
ISS:微重力和正常重力条件下导电高温复合材料的合成
  • 批准号:
    2422018
  • 财政年份:
    2023
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions
ISS:微重力和正常重力条件下导电高温复合材料的合成
  • 批准号:
    2024546
  • 财政年份:
    2020
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Additive Manufacturing of Load and Energy Absorbing Materials through an Integrated Experimental and Modelling Approach
通过综合实验和建模方法增材制造负载和能量吸收材料
  • 批准号:
    1853893
  • 财政年份:
    2019
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Lithographic Patterning of Co-Dispersed Nanomaterials for Device Applications
用于设备应用的共分散纳米材料的光刻图案
  • 批准号:
    1661564
  • 财政年份:
    2017
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Design of Ultrahigh Surface Area Conductive Materials
合作研究:超高比表面积导电材料集成设计
  • 批准号:
    1634325
  • 财政年份:
    2016
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Multi-Scale Study of Nanoparticle Sintering
纳米颗粒烧结的多尺度研究
  • 批准号:
    0969888
  • 财政年份:
    2010
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
Template-Assisted Nanoparticle Processing
模板辅助纳米颗粒加工
  • 批准号:
    0824741
  • 财政年份:
    2008
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
GOALI: Nanodesign and Efficient Processing of Boron Carbide Nanocomposites
目标:碳化硼纳米复合材料的纳米设计和高效加工
  • 批准号:
    0620621
  • 财政年份:
    2006
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant

相似国自然基金

低温烧结中低介微波介质陶瓷的损耗抑制与太赫兹介电响应机理研究
  • 批准号:
    52372102
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超快速烧结法制备高熵碳化物包覆WC基纳米硬质合金及其性能研究
  • 批准号:
    52371023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
激光诱导非热效应及其强化月壤矿物低温烧结的动力学机制
  • 批准号:
    52304388
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多场耦合高性能陶瓷烧结与微结构设计
  • 批准号:
    52372064
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于电学特征突变的铁矿粉高温同化性能表征及其在烧结成矿过程研究
  • 批准号:
    52374315
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Continuing Grant
Mechanistic Understanding of Multi-scale Sintering Behavior Influenced by Anisotropic Particle and Pore Distributions in Extrusion-based Metal Additive Manufacturing
基于挤压的金属增材制造中受各向异性颗粒和孔隙分布影响的多尺度烧结行为的机理理解
  • 批准号:
    2224309
  • 财政年份:
    2023
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
CAREER: Understanding multiscale sintering kinetics and microstructural evolution in binder-based metal additive manufacturing
职业:了解基于粘合剂的金属增材制造中的多尺度烧结动力学和微观结构演变
  • 批准号:
    2237433
  • 财政年份:
    2023
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Continuing Grant
Understanding the Transition between Ductile and Brittle Fracture Modes in Sintering Materials
了解烧结材料中延性断裂模式和脆性断裂模式之间的转变
  • 批准号:
    1826064
  • 财政年份:
    2018
  • 资助金额:
    $ 30.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了