Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization

协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性

基本信息

  • 批准号:
    1955785
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Algorithmic decision-making is ubiquitous in the modern era. Our society uses algorithms to solve problems ranging from making investment decisions in personal financial planning, to allocating resources in large-scale computing systems such as data centers. Often, these problems are difficult because of uncertainty about the future. In algorithmic theory, traditionally conservative approaches are used which provide relatively weak but highly robust guarantees that hold no matter how the future unfolds. In practice, a more promising alternative is the use of machine-learning techniques to make algorithmic choices for the future based on knowledge of past data. By implicitly assuming that the future will mirror the past, one can provide stronger guarantees and better empirical performance. However, the "worst-case" robustness of the previous approach is not available, which is important if the implicit assumption of 'past predicts the future' no longer holds true. This project seeks to combine the two approaches and get the best of both worlds by exploring the interface between algorithm design and machine learning. The end goal is a comprehensive toolbox for algorithmic decision-making under uncertainty that is both robust and has good performance. In addition to this research component, the project will train graduate and undergraduate researchers in theoretical computer science, with an emphasis on participation of underrepresented groups.The investigators' approach is to rethink each of these individual toolboxes to take advantage of the other -- namely incorporating machine-learned advice in algorithm design, and conversely, training machine learning models for algorithmic objectives. The main intellectual thrust of this project is to use machine-learned predictions to improve the quality of algorithms, and conversely, to design learning models that can be specifically trained for optimization objectives. This will be explored in two main directions: the first part considers Machine Learning as a Black Box. Here, the optimization algorithm merely consumes the predictions from the learning model. This is often the case in practice, particularly when the predictions are generated by complex systems such as deep neural networks. In this case, the focus will be on ensuring that we do not over-fit the predictions, on deciding what input parameters to predict in the first place, and on choosing between multiple alternative prediction models based on their relative accuracy, reliability, and costs. In the second part (Machine Learning as a White Box), the focus is on a more integrated design, where the optimization algorithm interacts with the learning model at runtime and ask adaptives queries. More ambitiously, the project explores a significant redesign of the end-to-end system, including the learning models and the optimization algorithms, for specific optimization tasks. This work will rely on techniques from online algorithms, stochastic and robust optimization, and learning theory, and build connections between these fields to address the central questions of algorithmic decision making under uncertainty.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算法决策在现代无处不在。我们的社会使用算法来解决从个人财务规划中的投资决策到数据中心等大规模计算系统中的资源分配等问题。通常,由于未来的不确定性,这些问题很困难。在算法理论中,使用传统的保守方法,这些方法提供相对较弱但高度稳健的保证,无论未来如何发展。在实践中,更有前途的替代方案是使用机器学习技术,根据过去数据的知识为未来做出算法选择。通过隐含地假设未来将反映过去,我们可以提供更有力的保证和更好的经验表现。然而,先前方法的“最坏情况”稳健性不可用,如果“过去预测未来”的隐含假设不再成立,这一点就很重要。该项目旨在通过探索算法设计和机器学习之间的接口,将这两种方法结合起来,并获得两全其美的效果。最终目标是建立一个用于不确定性下算法决策的综合工具箱,既稳健又具有良好的性能。除了这个研究部分之外,该项目还将培训理论计算机科学领域的研究生和本科生研究人员,重点是代表性不足群体的参与。研究人员的方法是重新思考这些单独的工具箱中的每一个,以利用另一个工具箱——即将机器学习建议纳入算法设计中,反之,为算法目标训练机器学习模型。该项目的主要思想是利用机器学习预测来提高算法的质量,反过来,设计可以针对优化目标进行专门训练的学习模型。这将在两个主要方向上进行探索:第一部分将机器学习视为黑匣子。在这里,优化算法仅消耗学习模型的预测。实践中经常出现这种情况,特别是当预测是由深度神经网络等复杂系统生成时。在这种情况下,重点将是确保我们不会过度拟合预测,首先决定要预测哪些输入参数,并根据多个替代预测模型的相对准确性、可靠性和成本进行选择。在第二部分(机器学习作为白盒)中,重点是更加集成的设计,其中优化算法在运行时与学习模型交互并询问自适应查询。更雄心勃勃的是,该项目探索了针对特定优化任务的端到端系统的重大重新设计,包括学习模型和优化算法。这项工作将依靠在线算法、随机和鲁棒优化以及学习理论等技术,并在这些领域之间建立联系,以解决不确定性下算法决策的核心问题。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Bounds for the k -cut Problem
k 割问题的最优界
  • DOI:
    10.1145/3478018
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gupta, Anupam;Harris, David G.;Lee, Euiwoong;Li, Jason
  • 通讯作者:
    Li, Jason
An Improved Local Search Algorithm for k-Median
一种改进的k-中值局部搜索算法
Augmenting Online Algorithms with epsilon-Accurate Predictions
使用 epsilon 准确预测增强在线算法
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gupta, Anupam;Panigrahi, Debmalya;Subercaseaux, Bernardo;Sun, Kevin
  • 通讯作者:
    Sun, Kevin
The Power of Adaptivity for Stochastic Submodular Cover
随机子模覆盖的自适应能力
Configuration Balancing for Stochastic Requests
随机请求的配置平衡
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anupam Gupta其他文献

How long do particles spend in vortical regions in turbulent flows?
粒子在湍流中的涡旋区域停留多长时间?
  • DOI:
    10.1103/physreve.94.053119
  • 发表时间:
    2016-09-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akshay Bhatnagar;Anupam Gupta;D. Mitra;R. P;it;it;P. Perlekar
  • 通讯作者:
    P. Perlekar
Lyapunov dimension of elastic turbulence
弹性湍流的李亚普诺夫维数
  • DOI:
    10.1017/jfm.2017.267
  • 发表时间:
    2017-01-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    E. Plan;Anupam Gupta;D. Vincenzi;J. Gibbon
  • 通讯作者:
    J. Gibbon
Efficient Algorithms and Hardness Results for the Weighted k-Server Problem
加权 k-服务器问题的高效算法和硬度结果
  • DOI:
    10.48550/arxiv.2307.11913
  • 发表时间:
    2023-07-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anupam Gupta;Ajay Kumar;Debmalya Panigrahi
  • 通讯作者:
    Debmalya Panigrahi
Dynamically Evolving
动态发展
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naveen Garg;Anupam Gupta;Stefano Leonardi;P. Sankowski
  • 通讯作者:
    P. Sankowski
Simpler and Better Approximation Algorithms for Network Design
更简单、更好的网络设计近似算法

Anupam Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anupam Gupta', 18)}}的其他基金

Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
NSF: STOC 2024 Conference Student Travel Support
NSF:STOC 2024 会议学生旅行支持
  • 批准号:
    2421504
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
  • 批准号:
    2224718
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs
合作研究:AF:小:随机输入的组合优化
  • 批准号:
    2006953
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AF: Small: New Approaches for Approximation and Online Algorithms
AF:小:近似和在线算法的新方法
  • 批准号:
    1907820
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Metric Embeddings and Partitioning for Minor-Closed Graph Families
CCF-BSF:AF:小:次封闭图族的度量嵌入和分区
  • 批准号:
    1617790
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
BSF: 2014414: New Challenges and Perspectives in Online Algorithms
BSF:2014414:在线算法的新挑战和前景
  • 批准号:
    1540541
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AF: Small: Approximation Algorithms for Uncertain Environments and Graph Partitioning
AF:小:不确定环境和图分区的近似算法
  • 批准号:
    1319811
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AF: Small: Future Directions in Approximation Algorithms Research
AF:小:近似算法研究的未来方向
  • 批准号:
    1016799
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Emerging Directions in Network Design and Optimization
协作研究:网络设计和优化的新兴方向
  • 批准号:
    0729022
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342245
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335412
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
  • 批准号:
    2402572
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了