CCF-BSF: AF: Small: Metric Embeddings and Partitioning for Minor-Closed Graph Families
CCF-BSF:AF:小:次封闭图族的度量嵌入和分区
基本信息
- 批准号:1617790
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The interaction between algorithm design and metric embeddings has been a very fruitful one. Over the past two decades, the toolbox of metric embeddings has become an indispensable one for the algorithm designer. The reason is simple: embeddings give a set of techniques to simplify graphs and metric spaces. This has led to approximation algorithms for many graph partitioning and network design problems. In turn, better graph decompositions have led to better embeddings. Nevertheless, the interplay between graph topology and the metric geometry is not fully understood. This proposal focuses on developing new techniques for interesting families of graphs. Broader impacts include the engagement of undergraduate students and women in research, and the training of graduate students and postdoctoral associates. Moreover, the proposed research should help develop deeper connections between computer science and mathematics. Being part of a joint initiative between NSF and the US-Israel Binational Science Foundation, this project will increase collaboration between researchers working on similar topics in the United States and Israel.The technical aspects of the research focus on questions in metric embeddings and graph partitioning for planar, bounded tree-width and path-width graphs, and general minor-closed families of graphs. These include getting better low-diameter partitions for these families via the bounded-threatener program, getting better L1 and tree embeddings, and improved metric and graph compression techniques, such as improved vertex-sparsifiers and spanners.
算法设计和度量嵌入之间的相互作用是非常富有成效的。在过去的二十年里,度量嵌入工具箱已经成为算法设计者不可或缺的工具箱。原因很简单:嵌入提供了一组简化图和度量空间的技术。这导致了许多图划分和网络设计问题的近似算法。反过来,更好的图分解带来了更好的嵌入。 然而,图拓扑和度量几何之间的相互作用尚未完全理解。该提案的重点是为有趣的图族开发新技术。 更广泛的影响包括本科生和女性参与研究,以及研究生和博士后的培训。此外,拟议的研究应有助于在计算机科学和数学之间建立更深入的联系。作为 NSF 和美国-以色列两国科学基金会联合计划的一部分,该项目将加强美国和以色列研究类似主题的研究人员之间的合作。该研究的技术方面重点关注度量嵌入和图划分中的问题用于平面、有界树宽度和路径宽度图,以及一般的小闭族图。 其中包括通过有界威胁程序为这些族获得更好的低直径分区,获得更好的 L1 和树嵌入,以及改进的度量和图压缩技术,例如改进的顶点稀疏器和扳手。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anupam Gupta其他文献
Efficient Algorithms and Hardness Results for the Weighted k-Server Problem
加权 k-服务器问题的高效算法和硬度结果
- DOI:
10.48550/arxiv.2307.11913 - 发表时间:
2023-07-21 - 期刊:
- 影响因子:0
- 作者:
Anupam Gupta;Ajay Kumar;Debmalya Panigrahi - 通讯作者:
Debmalya Panigrahi
Lyapunov dimension of elastic turbulence
弹性湍流的李亚普诺夫维数
- DOI:
10.1017/jfm.2017.267 - 发表时间:
2017-01-06 - 期刊:
- 影响因子:3.7
- 作者:
E. Plan;Anupam Gupta;D. Vincenzi;J. Gibbon - 通讯作者:
J. Gibbon
How long do particles spend in vortical regions in turbulent flows?
粒子在湍流中的涡旋区域停留多长时间?
- DOI:
10.1103/physreve.94.053119 - 发表时间:
2016-09-08 - 期刊:
- 影响因子:0
- 作者:
Akshay Bhatnagar;Anupam Gupta;D. Mitra;R. P;it;it;P. Perlekar - 通讯作者:
P. Perlekar
Deformation and break-up of Viscoelastic Droplets Using Lattice Boltzmann Models
使用格子玻尔兹曼模型进行粘弹性液滴的变形和破碎
- DOI:
10.1016/j.piutam.2015.04.030 - 发表时间:
2014-11-09 - 期刊:
- 影响因子:0
- 作者:
Anupam Gupta;M. Sbragaglia - 通讯作者:
M. Sbragaglia
UvA-DARE ( Digital Academic Repository ) Photon reconstruction in the ATLAS inner detector and liquid argon barrel calorimeter at the 2004 combined test beam
UvA-DARE(数字学术知识库)2004 年组合测试光束中 ATLAS 内部探测器和液氩桶量热仪中的光子重建
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
E. Abat;J. Abdallah;T. Addy;P. Adragna;M. Aharrouche;A. Ahmad;T. Åkesson;M. Aleksa;C. Alexa;K. Anderson;A. Andreazza;F. Anghinolfi;A. Antonaki;G. Arabidze;E. Arik;T. Atkinson;J. Baines;O. Baker;D. Banfi;S. Baron;A. Barr;R. Beccherle;H. Beck;B. Belhorma;P. Bell;D. Benchekroun;D. Benjamin;Kamal Benslama;E. B. Kuutmann;J. Bernabeu;H. Bertelsen;S. Binet;C. Biscarat;V. Boldea;V. Bondarenko;M. Boonekamp;M. Bosman;C. Bourdarios;Z. Broklova;D. B. Chromek;V. Bychkov;J. Callahan;D. Calvet;M. Canneri;M. Garrido;M. Caprini;L. Sas;T. Carli;L. Carminati;J. Carvalho;M. Cascella;M. V. Castillo;A. Catinaccio;D. Cauz;D. Cavalli;M. Sforza;V. Cavasinni;S. Cetin;He;R. Cherkaoui;L. Chevalier;F. Chevallier;S. Chouridou;M. Ciobotaru;M. Citterio;A. Clark;B. Clel;M. Cobal;E. Cogneras;P. Muiño;M. Consonni;S. Constantinescu;T. Cornelissen;S. Corréard;A. Radu;G. Costa;M. Costa;D. Costanzo;S. Cuneo;P. Cwetanski;D. D. Silva;M. Dam;M. Dameri;H. Danielsson;D. Dannheim;G. Darbo;T. Davidek;K. De;P. Defay;B. Dekhissi;J. Del;T. Prete;M. Delmastro;F. Derue;L. Ciaccio;B. Girolamo;S. Dita;F. Dittus;F. Djama;T. Djobava;D. Dobos;M. Dobson;B. Dolgoshein;A. Dotti;G. Drake;Z. Drasal;N. Dressn;t;t;C. Driouchi;J. Drohan;W. Ebenstein;P. Eerola;I. Efthymiopoulos;K. Egorov;T. Eifert;K. Einsweiler;M. Kacimi;M. Elsing;D. Emelyanov;C. Escobar;A. Etienvre;A. Fabich;K. Facius;A. I. Fakhr;M. Fanti;A. Farbin;P. Farthouat;D. Fassouliotis;L. Fayard;R. Febbraro;O. Fedin;A. Fenyuk;D. Fergusson;P. Ferrari;R. Ferrari;B. C. Ferreira;A. Ferrer;D. Ferrere;G. Filippini;T. Flick;D. Fournier;P. Francavilla;D. Francis;R. Froeschl;D. Froidevaux;E. Fullana;S. Gadomski;G. Gagliardi;P. Gagnon;M. Gallas;B. Gallop;S. Gameiro;K. Gan;R. Garcia;C. García;I. Gavrilenko;C. Gemme;P. Gerlach;N. Ghodbane;V. Giakoumopoulou;V. Giangiobbe;N. Giokaris;G. Glonti;T. Goettfert;T. Golling;N. Gollub;A. Gomes;M. D. Gomez;S. Gonzalez;M. Goodrick;G. Gorfine;B. Gorini;D. Goujdami;K. Grahn;P. Grenier;N. Grigalashvili;Y. Grishkevich;J. Grosse;M. Gruwe;C. Guicheney;Anupam Gupta;C. Haeberli;R. Haertel;Z. Hajduk;H. Hakobyan;M. Hance;J. D. Hansen;P. Hansen;K. Hara;A. Harvey;R. Hawkings;F. Heinemann;A. Henriques;T. Henss;L. Hervás;E. Higón;J. Hill;J. Hoffman;J. Hostachy;I. Hruška;F. Hubaut;F. Huegging;W. Hulsbergen;M. Hurwitz;L. Iconomidou;E. Jansen;I. Plante;P. Johansson;K. Jon;M. Joos;S. Jorgensen;J. Joseph;A. Kaczmarska;M. Kado;A. Karyukhin;M. Kataoka;F. Kayumov;A. Kazarov;P. Keener;G. Kekelidze;N. Kerschen;S. Kersten;A. Khomich;G. Khoriauli;E. Khramov;A. Khristachev;J. Khubua;T. Kittelmann;R. Klingenberg;E. Klinkby;P. Kodyš;T. Koffas;S. Kolos;S. Konovalov;N. Konstantinidis;S. Kopikov;I. Korolkov;V. Kostyukhin;S. Kovalenko;T. Kowalski;K. Kruger;V. Kramarenko;L. Kudin;Y. Kulchitsky;C. Lacasta;R. Lafaye;B. Laforge;W. Lampl;F. Lanni;S. Laplace;T. Lari;A. Bihan;M. Lechowski;F. Ledroit;G. Lehmann;R. Leitner;D. Lelas;C. Lester;Z. Liang;P. Lichard;W. Liebig;A. Lipniacka;M. Lokajicek;L. Louchard;K. Loureiro;A. Lucotte;F. Luehring;B. Lund;B. Lundberg;Hong Ma;R. Mackeprang;A. Maio;V. Maleev;F. Malek;L. M;elli;elli;J. Maneira;M. Mangin;A. Manousakis;L. Mapelli;C. Marques;S. Garcia;F. Martin;M. Mathes;M. Mazzanti;K. Mcfarlane;R. McPherson;G. Mchedlidze;S. Mehlhase;C. Meirosu;Z. Meng;C. Meroni;V. Mialkovski;B. Mikulec;D. Milstead;I. Minashvili;B. Mindur;V. Mitsou;S. Moed;E. Monnier;G. Moorhead;P. Morettini;S. Morozov;M. Mosidze;S. Mouraviev;E. Moyse;A. Munar;A. Myagkov;A. V. Nadtochi;K. Nakamura;P. Nechaeva;A. Negri;S. Nemecek;M. Nessi;S. Nesterov;F. Newcomer;I. Nikitine;K. Nikolaev;I. Nikolic;H. Ogren;Seog Oh;S. Oleshko;J. Olszowska;A. Onofre;C. P. Ar;a;a;S. Paganis;D. Pallin;D. Pantea;V. Paolone;F. Parodi;J. Parsons;S. Parzhitskiy;E. Pasqualucci;S. Passmored;J. Pater;S. Patrichev;M. Peez;V. Reale;L. Perini;V. Peshekhonov;J. Petersen;T. Petersen;R. Petti;P. Phillips;J. Pilcher;J. Pina;B. Pinto;F. Podlyski;L. Poggioli;A. Poppleton;J. Poveda;P. Pralavorio;L. Přibyl;M. Price;D. Prieur;C. Puigdengoles;P. Puzo;F. Ragusa;S. Rajagopalan;K. Reeves;I. Reisinger;C. Rembser;P. D. Renstrom;P. Reznicek;M. Ridel;P. Risso;I. Riu;D. Robinson;C. Roda;S. Roe;O. Røhne;A. Romaniouk;D. Rousseau;A. Rozanov;A. Ruiz;N. Rusakovich;D. Rust;Y. Ryabov;V. Ryjov;O. Saltó;B. Salvachua;A. Salzburger;H. S;aker;aker;C. Santamarina;L. Santi;C. Santoni;J. Saraiva;F. Sarri;G. Sauvage;L. Says;M. Schaefer;V. Schegelsky;C. Schiavi;J. Schieck;G. Schlager;J. Schlereth;C. Schmitt;J. Schultes;P. Schwemling;J. Schwindling;J. Seixas;D. Seliverstov;L. Serin;A. Sfyrla;N. Shal;a;a;C. Shaw;T. Shin;A. Shmeleva;J. Silva;S. Simion;M. Simonyan;J. Sloper;S. Smirnov;L. Smirnova;C. Solans;A. Solodkov;O. Solovianov;I. Soloviev;V. Sosnovtsev;F. Spanò;P. Speckmayer;S. Stancu;R. Stanek;E. Starchenko;A. Straessner;S. Suchkov;M. Suk;R. Szczygiel;F. Tarrade;F. Tartarelli;P. Tas;Y. Tayalati;F. Tegenfeldt;R. Teuscher;M. Thioye;V. Tikhomirov;C. Timmermans;S. Tisserant;B. Toczek;L. Tremblet;C. Troncon;P. Tsiareshka;M. Tyndel;Meltem Unel;G. Unal;G. Unel;G. Usai;R. Berg;A. Valero;S. Valkar;J. Valls;W. V;elli;elli;F. Vannucci;A. Vartapetian;V. Vassilakopoulos;L. Vasilyeva;F. Vazeille;F. Vernocchi;Y. Vetter;I. Vichou;V. Vinogradov;J. Virzi;I. Vivarelli;J. Vivie;M. Volpi;T. Anh;Chen Wang;M. Warren;J. Weber;Michael S. Weber;A. Weidberg;J. Weingarten;P. Wells;P. Werner;S. Wheeler;M. Wiessmann;H. Wilkens;H. Williams;I. Wingerter;Y. Yasu;A. Zaitsev;A. Zenin;T. Ženiš;Z. Zenonos;H. Zhang;A. Zhelezko;N. Zhou;T. Beau;S. Bordoni;G. Calderini;A. Camard;P. Cavalleri;E. Chareyre;S. Cecco;D. Imbault;M. Krasny;D. Lacour;O. L. Dortz;J. Lellouch;G. Marchiori;J. Ocariz;L. Roos;P. Schwemling;T. Theveneaux;S. Trincaz;T. N. Trinh - 通讯作者:
T. N. Trinh
Anupam Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anupam Gupta', 18)}}的其他基金
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
NSF: STOC 2024 Conference Student Travel Support
NSF:STOC 2024 会议学生旅行支持
- 批准号:
2421504 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
- 批准号:
2224718 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
1955785 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs
合作研究:AF:小:随机输入的组合优化
- 批准号:
2006953 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: New Approaches for Approximation and Online Algorithms
AF:小:近似和在线算法的新方法
- 批准号:
1907820 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
BSF: 2014414: New Challenges and Perspectives in Online Algorithms
BSF:2014414:在线算法的新挑战和前景
- 批准号:
1540541 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Approximation Algorithms for Uncertain Environments and Graph Partitioning
AF:小:不确定环境和图分区的近似算法
- 批准号:
1319811 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
AF: Small: Future Directions in Approximation Algorithms Research
AF:小:近似算法研究的未来方向
- 批准号:
1016799 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Emerging Directions in Network Design and Optimization
协作研究:网络设计和优化的新兴方向
- 批准号:
0729022 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
- 批准号:31871988
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
- 批准号:61774171
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
- 批准号:38870708
- 批准年份:1988
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
CCF-BSF: AF: Small: Algorithms for Interactive Learning
CCF-BSF:AF:小型:交互式学习算法
- 批准号:
1813160 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
- 批准号:
1814041 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Collaborative Research: Practice-Friendly Theory and Algorithms for Linear Regression Problems
CCF-BSF:AF:小型:协作研究:线性回归问题的实用理论和算法
- 批准号:
1813374 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CCF-BSF: AF: CIF: Small: Low Complexity Error Correction
CCF-BSF:AF:CIF:小:低复杂性纠错
- 批准号:
1814629 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CCF-BSF: AF: Small: Convex and Non-Convex Distributed Learning
CCF-BSF:AF:小:凸和非凸分布式学习
- 批准号:
1718970 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant