Molecular dynamics with nuclear quantum effects: merging the quantum and classical domains

具有核量子效应的分子动力学:量子域和经典域的融合

基本信息

项目摘要

Sophya Garashchuk of the University of South Carolina is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop theoretical and computational approaches that consider the behavior of the nuclei in molecules and materials. This research is motivated by the need to understand nanomaterials and large molecular structures. In-depth understanding of how such structures and materials interact with light, current and heat in applications such as electronics, batteries and medical devices requires theoretical and computational methods capable of spanning several orders of magnitude in time, space, and hierarchy. Professor Garashchuk's research starts at the most fundamental level possible, for example, by examining protons. The more advanced computational descriptions (quantum calculations) that are restricted to just a few atomic nuclei at a time due to computational cost are merged with simpler classical representations for more complex, bigger and heavier nuclei. The atomistic simulations yield experimentally relevant properties such as predictions of the speed of the reaction or charge and energy transport rates. These parameters are necessary for the development of even more advanced models of bigger molecular systems. Modeling the systems’ properties and responses to external stimuli (temperature, electric and magnetic fields) guides the experiments and accelerate the development of new materials and molecular devices for sensing, computing, communications and other applications. Professor Garashchuk's research and educational activities will train the workforce ready for the emerging quantum information science. She promote use of computational chemistry and computing in education and research among students and researchers at her home institution, as well as at sister campuses and predominantly undergraduate institutions throughout the state of South Carolina. The research team is engaged in K-12 science demonstrations to showcase molecules and their roles in everyday technologies. These activities broaden participation of underrepresented groups in research, develop of the next-generation technologies, and communicate contributions of STEM to the general public of South Carolina, a geographically underrepresented group in the global research enterprise.Garashchuk develops theory and computational methods for the hierarchical treatment of nuclei practical for large (10-1000 atoms) molecular systems. The hierarchy consists of exact (time-dependent bases) and approximate methods (classical dynamics, possibly, with quantum corrections) unified by the trajectory framework. The exact quantum dynamics employs Gaussian bases which adapt to the evolving nuclear wave function by following the probability density flow, which follows the quantum trajectories. Such basis function evolution defines ‘minimalistic’ representation of a wavefunction in configuration space and improves the scaling properties of the method with the system size. The Gaussians are correlated and normalizable by construction. The multilevel description of the nuclei, helps to exploit the time- and mass-scale separation for an efficient computational methodology, interfaced with on-the-fly electronic structure calculations. The Quantum Trajectory-guided Adaptable Gaussian (QTAG) dynamics is employed to study nuclear quantum effects in molecular aggregates, i. e. crystalline materials, active sites of enzyme catalytic cycle, functional molecules integrated into covalent and metal-organic frameworks, as a way to tune and control their properties relevant to the design of molecular sensors, switches, catalysts, and to the emerging quantum device and computer applications. Connecting research with education and workforce development, Garashchuk incorporates computational chemistry into the graduate and undergraduate curriculum, by providing cyber-research opportunities to regional undergraduate colleges, and by hands-on training of students at all levels in computational chemistry tools and methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
南卡罗来纳大学的 Sophya Garashchuk 获得了化学系化学理论、模型和计算方法项目的资助,以开发考虑分子和材料中原子核行为的理论和计算方法。由于需要了解纳米材料和大分子结构,深入了解这些结构和材料在电子、电池和医疗设备等应用中如何与光、电流和热相互作用,需要能够跨越几个数量级的理论和计算方法。及时, Garashchuk 教授的研究从最基本的层面开始,例如,通过检查质子来合并由于计算成本而一次仅限于几个原子核的更高级的计算描述(量子计算)。对更复杂、更大和更重的原子核进行更简单的经典表示,原子模拟产生了实验相关的属性,例如反应速度或电荷和能量传输速率的预测,这些参数对于开发更大的更先进的模型是必要的。分子系统。对系统的特性和对外部刺激(温度、电场和磁场)的响应进行建模,指导实验并加速用于传感、计算、通信和其他应用的新材料和分子设备的开发。她将培训劳动力,为新兴的量子信息科学做好准备。她在她所在机构以及整个南卡罗来纳州的姐妹校区和主要本科院校的学生和研究人员中推广计算化学和计算在教育和研究中的应用。研究团队从事K-12 科学演示旨在展示分子及其在日常技术中的作用,这些活动扩大了代表性不足的群体对研究、下一代技术开发的参与,并向南卡罗来纳州这一地理上代表性不足的群体传达了 STEM 的贡献。 Garashchuk 开发了适用于大型(10-1000 个原子)分子系统的原子核分层处理的理论和计算方法。该分层结构由精确方法(时间依赖性基础)和近似方法(经典动力学、精确的量子动力学采用高斯基,通过遵循概率密度流来适应不断演化的核波函数,这种基函数演化定义了 的“简约”表示。空间配置中的波函数,并改善了该方法与系统尺寸的缩放特性。高斯函数通过构造进行关联和归一化,有助于利用时间和质量尺度的分离来实现高效。计算方法,与动态电子结构计算相结合,采用量子轨迹引导的自适应高斯(QTAG)动力学来研究分子聚集体(即酶催化循环的活性位点)中的核量子效应。共价和金属有机框架,作为调整和控制其与分子传感器、开关、催化剂设计以及新兴量子设备和计算机应用相关的特性的一种方式。随着教育和劳动力发展,加拉什丘克将计算化学纳入研究生和本科生课程,为地区本科院校提供网络研究机会,并对各级学生进行计算化学工具和方法的实践培训。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Self-Assembly on the Photogeneration of Radical Cations in Halogenated Triphenylamines
自组装对卤代三苯胺中自由基阳离子光生的影响
  • DOI:
    10.1021/acs.jpcc.1c04933
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hossain, Muhammad Saddam;Sindt, Ammon J.;Goodlett, Dustin W.;Shields, Dylan J.;O’Connor, Colin J.;Antevska, Aleksandra;Karakalos, Stavros G.;Smith, Mark D.;Garashchuk, Sophya;Do, Thanh D.;et al
  • 通讯作者:
    et al
Modeling the Ligand Effect on the Structure of CYP 450 Within the Density Functional Theory
在密度泛函理论中模拟配体对 CYP 450 结构的影响
  • DOI:
    10.1021/acs.jpca.2c01783
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dutra, Matthew;McElhenney, Shannon;Manley, Olivia;Makris, Tom;Rassolov, Vitaly;Garashchuk, Sophya
  • 通讯作者:
    Garashchuk, Sophya
The quantum trajectory‐guided adaptive Gaussian methodology in the Libra software package
Libra 软件包中的量子轨迹引导自适应高斯方法
From Incident Light to Persistent and Regenerable Radicals of Urea-Assembled Benzophenone Frameworks: A Structural Investigation
从入射光到尿素组装的二苯甲酮框架的持久和可再生自由基:结构研究
  • DOI:
    10.1021/acs.jpca.0c08953
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Goodlett, Dustin W.;Sindt, Ammon J.;Hossain, Muhammad Saddam;Merugu, Rajkumar;Smith, Mark D.;Garashchuk, Sophya;Gudmundsdottir, Anna D.;Shimizu, Linda S.
  • 通讯作者:
    Shimizu, Linda S.
Assembled triphenylamine bis -urea macrocycles: exploring photodriven electron transfer from host to guests
组装的三苯胺双脲大环化合物:探索从主体到客体的光驱动电子转移
  • DOI:
    10.1039/d1cp03000k
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Islam, Md Faizul;Sindt, Ammon J.;Hossain, Muhammad Saddam;Ayare, Pooja J.;Smith, Mark D.;Vannucci, Aaron K.;Garashchuk, Sophya;Shimizu, Linda S.
  • 通讯作者:
    Shimizu, Linda S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophya Garashchuk其他文献

The hybrid Quantum Trajectory/Electronic Structure DFTB-based approach to Molecular Dynamics
基于混合量子轨迹/电子结构 DFTB 的分子动力学方法
  • DOI:
    10.1145/2616498.2616503
  • 发表时间:
    2014-07-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Wang;James W. Mazzuca;Sophya Garashchuk;J. Jakowski
  • 通讯作者:
    J. Jakowski
Local Measure of Quantum Effects in Quantum Dynamics.
量子动力学中量子效应的局部测量。
  • DOI:
    10.1021/acs.jpca.1c02533
  • 发表时间:
    2021-05-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Rassolov;Sophya Garashchuk
  • 通讯作者:
    Sophya Garashchuk
Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.
高维分子系统中零点能量的长期稳定半经典描述。
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Sophya Garashchuk;V. Rassolov
  • 通讯作者:
    V. Rassolov
Energy conserving approximations to the quantum potential: dynamics with linearized quantum force.
量子势的能量守恒近似:具有线性化量子力的动力学。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Sophya Garashchuk;V. Rassolov
  • 通讯作者:
    V. Rassolov
Description of metals based on localized electrons
基于局域电子的金属描述
  • DOI:
    10.1016/s0009-2614(02)01190-9
  • 发表时间:
    2002-09-09
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    V. Rassolov;Sophya Garashchuk;M. Ratner
  • 通讯作者:
    M. Ratner

Sophya Garashchuk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophya Garashchuk', 18)}}的其他基金

Quantum Dynamics with Nuclear Quantum Effects: a Hhierarchical Methodology for Large Molecular Systems
具有核量子效应的量子动力学:大分子系统的层次方法论
  • 批准号:
    2308922
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Molecular dynamics with nuclear quantum effects: bridging classical and quantum regimes
具有核量子效应的分子动力学:连接经典体系和量子体系
  • 批准号:
    1565985
  • 财政年份:
    2016
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
CAREER: Approximate description of nuclear quantum effects applicable to large systems
职业:适用于大型系统的核量子效应的近似描述
  • 批准号:
    1056188
  • 财政年份:
    2011
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于超快结构成像的水分子电子态分辨及其核波包动力学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
线粒体动力学在红细胞脱核中的功能及分子机制研究
  • 批准号:
    82270124
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
强场电离分子激发态非绝热过程原子核与电子动力学的理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用单分子荧光跟踪技术研究细胞核内的染色质动力学及凋亡过程的细胞核形变机理
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
Fe熔体与硅酸盐熔体间H同位素分馏的第一性原理研究
  • 批准号:
    41903019
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Quantum Dynamics with Nuclear Quantum Effects: a Hhierarchical Methodology for Large Molecular Systems
具有核量子效应的量子动力学:大分子系统的层次方法论
  • 批准号:
    2308922
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
    Standard Grant
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
  • 批准号:
    10638817
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
Development of a lacO/lacI based fluorescence reporter-operator system to study chromosome dynamics and double-strand break repair in mouse meiosis.
开发基于 lacO/lacI 的荧光报告操纵子系统,用于研究小鼠减数分裂中的染色体动力学和双链断裂修复。
  • 批准号:
    10674379
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
Identifying differences in dynamics and residual structure of intrinsically disordered domains between monomer and fibers: using alpha-synuclein as a model
识别单体和纤维之间本质无序域的动力学和残余结构的差异:使用α-突触核蛋白作为模型
  • 批准号:
    10607325
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
In Silico Study and Optimization of Molecular Nanomotors for Membrane Photopharmacology
膜光药理学分子纳米马达的计算机研究和优化
  • 批准号:
    10629113
  • 财政年份:
    2023
  • 资助金额:
    $ 43.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了