Bounds and Asymptotic Dynamics for Nonlinear Evolution Equations

非线性演化方程的界和渐近动力学

基本信息

  • 批准号:
    2012333
  • 负责人:
  • 金额:
    $ 7.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Many physical, engineering, and biological phenomena are described by mathematical models with a large number of strongly-interacting particles. The range of these phenomena includes such diverse examples as complex and compressible fluids (combustion, aerospace engineering, and meteorology), nonlocal reaction-diffusion processes (nuclear physics, population biology, and genetics), and kinetic theory (plasma physics, swarm dynamics, and astrophysics). This project focuses on novel approaches to determining two fundamental characteristics of solutions to equations modeling large numbers of strongly interacting particles: their regularity and asymptotic behavior. The regularity of such problems establishes that the models are well-behaved, which often means the equations remain numerically tractable in computer simulations. The asymptotic theory seeks to find simplified limiting behavior for equations, in which many complex interactions average out and have a residual effect that governs the behavior of the system. Information about the limiting behavior is instrumental for applications such as medical imaging or materials science. For many important phenomena that demonstrate complex, nonlinear behavior, the application of known methods for analysis and control is greatly limited and not always possible. The aim of this project is to investigate three new techniques that partly overcome the difficulties caused by nonlinearity. The project will also provide training and research opportunities for both graduate and undergraduate students. The principal investigator will use techniques of nonlinear analysis, viscosity theory, and probability to establish bounds and asymptotic dynamics for the three major parts of the project. The first part focuses on exploring thermally enhanced dissipation for hydrodynamic equations where the viscosity grows with local temperature. From kinetic considerations and empirical observations, the kinematic viscosity of a compressible fluid flow increases with the local temperature and the local temperature is produced by friction. The intuition is that, in such models, regions of high turbulence self-regularize by producing hot spots which boost the viscosity exactly where it is needed to prevent the development of singularities. Prior work has identified this effect in two model problems (along with corresponding bounds). One of the main goals of the project is to push these types of estimates to physical models of compressible thermal fluids such as the Navier-Stokes-Fourier system, the equations of magneto-hydrodynamics, and the Poisson-Nernst-Planck-Fourier system for electrokinetic complex fluids. Enhanced thermal dissipation is a truly novel source of regularization compared to other known energy-based methods and lends itself naturally to dynamic weighted Sobolev estimates and entropy methods. The second part focuses on developing methods to extract asymptotic behavior from strongly nonlocal heterogeneous reaction-diffusion equations. There is a growing interest in extracting simpler macroscopic dynamics (often taking the form of geometric equations) from certain scaling limits of more complicated models. The nonlocal operators in these models present unique challenges in determining their residual impact on the (sometimes discontinuous) homogenized equation. The investigator plans to implement the techniques of viscosity theory to pursue homogenization phenomena for nonlocal periodic Fisher-KPP and bistable (Allen-Cahn) equations. The third part focuses on the regularity theory for kinetic equations (i.e., Landau and Boltzmann). Most regularity results for these equations rely on the assumption of having the lower bound on the density (as this often yields a minimum dissipation in the velocity variables). The investigator will explore the emergence of such lower bounds through probabilistic techniques, writing the kinetic equation as an approximate Fokker-Planck equation for a certain stochastic process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多物理、工程和生物现象都是通过具有大量强相互作用粒子的数学模型来描述的。这些现象的范围包括复杂和可压缩流体(燃烧、航空航天工程和气象学)、非局域反应扩散过程(核物理、群体生物学和遗传学)以及动力学理论(等离子体物理、群体动力学、和天体物理学)。该项目侧重于确定建模大量强相互作用粒子的方程解的两个基本特征的新方法:它们的规律性和渐近行为。此类问题的规律性表明模型表现良好,这通常意味着方程在计算机模拟中仍然在数值上易于处理。渐近理论试图找到方程的简化极限行为,其中许多复杂的相互作用趋于平均并具有控制系统行为的残余效应。有关限制行为的信息对于医学成像或材料科学等应用很有帮助。对于许多表现出复杂、非线性行为的重要现象,已知的分析和控制方法的应用受到很大限制,并且并不总是可行。该项目的目的是研究三种新技术,以部分克服非线性带来的困难。该项目还将为研究生和本科生提供培训和研究机会。首席研究员将使用非线性分析、粘度理论和概率技术来为该项目的三个主要部分建立边界和渐近动力学。第一部分侧重于探索流体动力学方程的热增强耗散,其中粘度随局部温度而增长。从动力学考虑和经验观察来看,可压缩流体流的运动粘度随着局部温度的增加而增加,并且局部温度是由摩擦产生的。直觉是,在此类模型中,高湍流区域通过产生热点进行自我调节,这些热点恰好在需要防止奇点发展的地方提高粘度。先前的工作已经在两个模型问题(以及相应的边界)中确定了这种效应。该项目的主要目标之一是将这些类型的估计推向可压缩热流体的物理模型,例如纳维-斯托克斯-傅里叶系统、磁流体动力学方程以及泊松-能斯特-普朗克-傅里叶系统动电复合流体。与其他已知的基于能量的方法相比,增强热耗散是一种真正新颖的正则化来源,并且自然地适合动态加权 Sobolev 估计和熵方法。第二部分侧重于开发从强非局部异质反应扩散方程中提取渐近行为的方法。人们越来越有兴趣从更复杂模型的某些尺度限制中提取更简单的宏观动力学(通常采用几何方程的形式)。这些模型中的非局部算子在确定其对(有时是不连续的)均质方程的残余影响方面提出了独特的挑战。研究人员计划应用粘度理论技术来研究非局部周期 Fisher-KPP 和双稳态 (Allen-Cahn) 方程的均质化现象。第三部分重点介绍动力学方程的正则理论(即朗道和玻尔兹曼)。这些方程的大多数正则性结果依赖于密度下界的假设(因为这通常会产生速度变量的最小耗散)。研究者将通过概率技术探索这种下界的出现,将动力学方程写为某个随机过程的近似福克-普朗克方程。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Front propagation for integro-differential KPP reaction–diffusion equations in periodic media
Local solutions of the Landau equation with rough, slowly decaying initial data
具有粗糙、缓慢衰减初始数据的朗道方程的局部解
  • DOI:
    10.1016/j.anihpc.2020.04.004
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henderson, Christopher;Snelson, Stanley;Tarfulea, Andrei
  • 通讯作者:
    Tarfulea, Andrei
Self-generating lower bounds and continuation for the Boltzmann equation
Local existence, lower mass bounds, and a new continuation criterion for the Landau equation
  • DOI:
    10.1016/j.jde.2018.08.005
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Christopher Henderson;Stanley Snelson;Andrei Tarfulea
  • 通讯作者:
    Christopher Henderson;Stanley Snelson;Andrei Tarfulea
Local well-posedness of the Boltzmann equation with polynomially decaying initial data
  • DOI:
    10.3934/krm.2020029
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Christopher Henderson;Stanley Snelson;Andrei Tarfulea
  • 通讯作者:
    Christopher Henderson;Stanley Snelson;Andrei Tarfulea
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Tarfulea其他文献

Gradient estimates and symmetrization for Fisher-KPP front propagation with fractional diffusion
具有分数扩散的 Fisher-KPP 前向传播的梯度估计和对称化
  • DOI:
    10.1016/j.matpur.2017.07.001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Roquejoffre;Andrei Tarfulea
  • 通讯作者:
    Andrei Tarfulea
The global existence of strong solutions for a non-isothermal ideal gas system
全球范围内存在非等温理想气体系统的强解
  • DOI:
    10.1007/s10473-024-0306-9
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Bin Han;Ning;Andrei Tarfulea
  • 通讯作者:
    Andrei Tarfulea
Improved a priori bounds for thermal fluid equations
改进热流体方程的先验界限

Andrei Tarfulea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Tarfulea', 18)}}的其他基金

Diffusive Regularization in Kinetic and Fluid Equations
动力学和流体方程的扩散正则化
  • 批准号:
    2108209
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Bounds and Asymptotic Dynamics for Nonlinear Evolution Equations
非线性演化方程的界和渐近动力学
  • 批准号:
    1816643
  • 财政年份:
    2018
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant

相似国自然基金

双曲型液晶弹性体动力学方程的分析和渐近问题
  • 批准号:
    12371224
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
非线性弹性动力学方程组的若干研究
  • 批准号:
    11901391
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
趋化反应扩散模型解的动力学行为
  • 批准号:
    11901298
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
两类流体动力学模型的渐近机理和边界层问题
  • 批准号:
    11901021
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
模式识别受体调控细胞死亡分子机制的微观时空动力学模型研究---动脉粥样硬化治疗中的应用
  • 批准号:
    11901360
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Asymptotic Problems in Random Dynamics
随机动力学中的渐近问题
  • 批准号:
    2246704
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
  • 批准号:
    2205493
  • 财政年份:
    2022
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Asymptotic and transient dynamics in predator-prey systems with spatial and temporal heterogeneity
具有时空异质性的捕食者-被捕食系统的渐近和瞬态动力学
  • 批准号:
    RGPIN-2020-06825
  • 财政年份:
    2022
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and transient dynamics in predator-prey systems with spatial and temporal heterogeneity
具有时空异质性的捕食者-被捕食系统的渐近和瞬态动力学
  • 批准号:
    RGPIN-2020-06825
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic Dynamics of Nonlinear Wave and Dispersive Equations
非线性波和色散方程的渐近动力学
  • 批准号:
    1954707
  • 财政年份:
    2020
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了