Collaborative Research: CNS Core: Small: AirEdge: Robust Airborne Wireless Edge Computing Network using Swarming UAVs
合作研究:CNS 核心:小型:AirEdge:使用集群无人机的强大机载无线边缘计算网络
基本信息
- 批准号:2008447
- 负责人:
- 金额:$ 33.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Unmanned aerial vehicle-aided networks have been widely recognized by both cellular and internet industry and academia as an emerging technique to enhance current networking infrastructure. The research objective of this project is to design, analyze, and evaluate AirEdge, which is an innovative robust 3D airborne computing and networking system that exploits a swarm of aerial mobile radio access points and edge servers carried or deployed by unmanned aerial vehicles. The unique feature of AirEdge is to enable fast-deployable highly efficient on-demand edge computing and networking services. AirEdge will enable a series of applications in the areas of disaster rescue, public safety, anti-terrorism, battlefield assistance, and mobile entertainment. For example, AirEdge can be rapidly deployed to the area impacted by the disaster and allows first responders to locate and identify injured people using face recognition and provide their corresponding health information for first aids. This project also fosters interdisciplinary research and provides a unique training program for undergraduate and graduate students.This project aims to realize AirEdge through the communication-motion co-design principles for 3D airborne networking and communication-computation co-design principles to enable reliable and energy-efficient airborne edge computing. Toward this end, two fundamental research problems are investigated: 1) how to dynamically establish edge computing networks to enable flexible edge computing and 2) how to integrate dynamic computing resource deployments with the communication network provided by unmanned aerial vehicle (UAVs) to enable low-latency and high-performance edge computing on resource-constrained computing platforms. To address these problems, 1) a new edge-assisted optimal motion control scheme is designed to exploit the abundant computation power of the ground edge server and high-fidelity ray-tracing simulations to perform site-specific Air-to-Ground channel modeling; 2) a new energy-efficient motion planning strategy is developed for the UAV swarm with an objective to simultaneously enhance the area spectral efficiency of the entire serving site and satisfy the time-varying data rate requirements of the edge computing applications; 3) a novel multi-agent actor-critic (MA-AC) reinforcement learning method is developed to realize a more adaptive and robust model-free control scheme under the uncertainties of the deployment environment; 4) a new context-aware adaptive edge computing deployment solution is designed to optimally integrate the airborne edge computing with the airborne communication network; 5) a novel dynamic edge analytics framework is engineered for the airborne communication and computing. The framework leverages approximate computing to mitigate the tradeoff between computation quality, service latency, and energy efficiency in AirEdge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无人机辅助网络已被蜂窝和互联网行业和学术界广泛认可为增强当前网络基础设施的新兴技术。该项目的研究目标是设计、分析和评估 AirEdge,这是一种创新的稳健 3D 机载计算和网络系统,利用无人机携带或部署的大量空中移动无线电接入点和边缘服务器。 AirEdge 的独特功能是支持快速部署、高效的按需边缘计算和网络服务。 AirEdge将在灾难救援、公共安全、反恐、战场援助、移动娱乐等领域实现一系列应用。例如,AirEdge可以快速部署到受灾地区,并允许急救人员使用人脸识别来定位和识别受伤人员,并提供相应的健康信息以进行急救。该项目还促进跨学科研究,并为本科生和研究生提供独特的培训计划。该项目旨在通过3D机载网络的通信-运动协同设计原则和通信-计算协同设计原则来实现AirEdge,以实现可靠和节能-高效的机载边缘计算。为此,研究了两个基本研究问题:1)如何动态建立边缘计算网络以实现灵活的边缘计算;2)如何将动态计算资源部署与无人机(UAV)提供的通信网络集成以实现低-资源受限计算平台上的延迟和高性能边缘计算。为了解决这些问题,1)设计了一种新的边缘辅助最优运动控制方案,利用地面边缘服务器丰富的计算能力和高保真射线追踪模拟来执行特定地点的空对地通道建模; 2)为无人机群开发了一种新的节能运动规划策略,旨在同时提高整个服务站点的区域频谱效率并满足边缘计算应用的时变数据速率要求; 3)开发了一种新颖的多智能体行动批评家(MA-AC)强化学习方法,以在部署环境的不确定性下实现更具适应性和鲁棒性的无模型控制方案; 4)设计了一种新的上下文感知自适应边缘计算部署解决方案,以将机载边缘计算与机载通信网络优化集成; 5) 为机载通信和计算设计了一种新颖的动态边缘分析框架。该框架利用近似计算来减轻 AirEdge 中计算质量、服务延迟和能源效率之间的权衡。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EdgeSlice: Slicing Wireless Edge Computing Network with Decentralized Deep Reinforcement Learning
- DOI:10.1109/icdcs47774.2020.00028
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Qiang Liu;T. Han;Ephraim Moges
- 通讯作者:Qiang Liu;T. Han;Ephraim Moges
Toward Scalable and Robust AIoT via Decentralized Federated Learning
通过去中心化联合学习实现可扩展且强大的 AIoT
- DOI:10.1109/iotm.006.2100216
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Pinyoanuntapong, Pinyarash;Huff, Wesley Houston;Lee, Minwoo;Chen, Chen;Wang, Pu
- 通讯作者:Wang, Pu
Dystri: A Dynamic Inference based Distributed DNN Service Framework on Edge
- DOI:10.1145/3605573.3605598
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Xueyu Hou;Yongjie Guan;Tao Han
- 通讯作者:Xueyu Hou;Yongjie Guan;Tao Han
DeepMix: mobility-aware, lightweight, and hybrid 3D object detection for headsets
- DOI:10.1145/3498361.3538945
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Yongjie Guan;Xueyu Hou;Na Wu;Bo Han;Tao Han
- 通讯作者:Yongjie Guan;Xueyu Hou;Na Wu;Bo Han;Tao Han
LiveMap: Real-Time Dynamic Map in Automotive Edge Computing
LiveMap:汽车边缘计算中的实时动态地图
- DOI:10.1109/infocom42981.2021.9488872
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Liu, Qiang;Han, Tao;Xie, Jiang Linda;Kim, BaekGyu
- 通讯作者:Kim, BaekGyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Han其他文献
Effects of Na+ ions on fluorescence properties of ZnSe quantum dots synthesized in an aqueous system
Na离子对水相体系中合成的ZnSe量子点荧光性质的影响
- DOI:
10.1016/j.jallcom.2015.03.206 - 发表时间:
2015-08 - 期刊:
- 影响因子:6.2
- 作者:
Lingling Peng;Tao Han;Liangliang Tian;Litao Yan - 通讯作者:
Litao Yan
Triazole End-Grafting on Cellulose Nanocrystals for Water-Redispersion Improvement and Reactive Enhancement to Nanocomposites
纤维素纳米晶体上的三唑末端接枝可改善纳米复合材料的水再分散性和反应性
- DOI:
10.1021/acssuschemeng.8b03407 - 发表时间:
2018-09 - 期刊:
- 影响因子:8.4
- 作者:
Li Le;Tao Han;Wu Bolang;Zhu Ge;Li Ke;Lin Ning - 通讯作者:
Lin Ning
Small Cell Offloading Through Cooperative Communication in Software-Defined Heterogeneous Networks
通过软件定义异构网络中的协作通信实现小蜂窝卸载
- DOI:
10.1109/jsen.2016.2581804 - 发表时间:
2016 - 期刊:
- 影响因子:4.3
- 作者:
Tao Han;Yuejie Han;Xiaohu Ge;Qiang Li;Jing Zhang;Zhiquan Bai;Lijun Wang - 通讯作者:
Lijun Wang
Fractal behavior of BDS-2 satellite clock offsets and its application to real-time clock offsets prediction
- DOI:
10.1007/s10291-019-0950-z - 发表时间:
2020-01 - 期刊:
- 影响因子:4.9
- 作者:
Tao Han - 通讯作者:
Tao Han
Uniform focusing with extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe
通过超薄整体光纤探头实现光学相干断层扫描的均匀聚焦、扩展深度范围和增加工作距离
- DOI:
10.1364/ol.383428 - 发表时间:
2020 - 期刊:
- 影响因子:3.6
- 作者:
Jianrong Qiu;Tao Han;Zhiyi Liu;Jia Meng;Zhihua Ding - 通讯作者:
Zhihua Ding
Tao Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Han', 18)}}的其他基金
Proposal for Support of the Annual Phenomenology Symposium at the University of Pittsburgh: 2022-2024
支持匹兹堡大学年度现象学研讨会的提案:2022-2024
- 批准号:
2222878 - 财政年份:2022
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
CNS Core: Small: UbiVision: Ubiquitous Machine Vision with Adaptive Wireless Networking and Edge Computing
CNS 核心:小型:UbiVision:具有自适应无线网络和边缘计算的无处不在的机器视觉
- 批准号:
2147821 - 财政年份:2021
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
- 批准号:
2147624 - 财政年份:2021
- 资助金额:
$ 33.34万 - 项目类别:
Continuing Grant
I-Corps: Low-Cost Holographic TelePresence System
I-Corps:低成本全息网真系统
- 批准号:
2049875 - 财政年份:2021
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: AirEdge: Robust Airborne Wireless Edge Computing Network using Swarming UAVs
合作研究:CNS 核心:小型:AirEdge:使用集群无人机的强大机载无线边缘计算网络
- 批准号:
2147623 - 财政年份:2021
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
I-Corps: Low-Cost Holographic TelePresence System
I-Corps:低成本全息网真系统
- 批准号:
2153693 - 财政年份:2021
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
- 批准号:
2047655 - 财政年份:2021
- 资助金额:
$ 33.34万 - 项目类别:
Continuing Grant
CNS Core: Small: UbiVision: Ubiquitous Machine Vision with Adaptive Wireless Networking and Edge Computing
CNS 核心:小型:UbiVision:具有自适应无线网络和边缘计算的无处不在的机器视觉
- 批准号:
1910844 - 财政年份:2019
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
Proposal for Support of the Annual Phenomenology Symposia at the University of Pittsburgh
支持匹兹堡大学年度现象学研讨会的提案
- 批准号:
1723889 - 财政年份:2017
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
Annual Phenomenology Symposia will held May 5-7, 2014 at the University of Pittsburgh in Pittsburgh, PA.
年度现象学研讨会将于 2014 年 5 月 5 日至 7 日在宾夕法尼亚州匹兹堡的匹兹堡大学举行。
- 批准号:
1417115 - 财政年份:2014
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
相似国自然基金
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
- 批准号:62363006
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
体细胞突变诱导的壁细胞缺陷在中枢神经系统血管畸形出血中的作用机制及干预研究
- 批准号:82330038
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 33.34万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 33.34万 - 项目类别:
Standard Grant