CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge

职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统

基本信息

  • 批准号:
    2047655
  • 负责人:
  • 金额:
    $ 44.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-15 至 2021-11-30
  • 项目状态:
    已结题

项目摘要

The next-generation wireless technology promises advanced network capabilities with extremely high bandwidth and ultra-low latency that will catalyze a wide range of new mobile services and customer applications in vertical sectors such as transport, media, and manufacturing. The explosion of networking connections and the diversification of network services will dramatically increase the complexity of network management. This CAREER project aims to develop domain-specific deep reinforcement learning (DRL) methods and systems to automate the configuration, provisioning, and orchestration of network resources and services in next-generation wireless edge computing networks. The successful completion of this CAREER project will advance the understanding of the inherent relationships among DRL, communications, computing, and networking and lay a solid foundation for studying learning-based algorithms and systems for network automation in wireless edge computing. Besides, the technologies developed in the project will significantly reduce the operational cost of wireless networks and thus allow affordable high-performance wireless connectivity for all communities including low-income and remote communities. Moreover, the project provides interdisciplinary education to cultivate next-generation engineers and researchers who master both advanced wireless and Artificial Intelligence (AI) technologies via the integration of research into education and industrial-academic and cross-disciplinary collaborations.This CAREER project aims to develop deep reinforcement learning (DRL) methods and systems that automate end-to-end resource orchestration in wireless edge computing networks. Toward this end, two fundamental research problems are investigated: 1) how to design domain-specific DRL that can effectively solve end-to-end orchestration problems in large-scale wireless edge computing networks and 2) how to efficiently deploy DRL-based orchestration solutions in large-scale networking systems. To solve the first problem, the project studies the design of states, reward functions, training algorithms, and neural networks of domain-specific DRL, develops methods of handling various constraints in DRL-based end-to-end resource orchestration to avoid constraint violations, and designs context-aware multi-agent DRL methods to leverage domain knowledge of wireless edge computing to improve the learning efficiency of DRL. To solve the second problem, this project develops policy distillation methods to address the DRL deployment issues caused by the divergence between network simulations and real network systems, and designs cross-scale knowledge transfer methods to address the DRL deployment issues caused by the mismatch of the dimensions of small-scale testbeds and large-scale wireless edge computing systems. The project also develops an augmented network simulator and an edge computing system prototype for evaluating DRL-based end-to-end orchestration solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代无线技术有望提供具有极高带宽和超低延迟的先进网络功能,这将促进运输、媒体和制造等垂直行业的各种新型移动服务和客户应用。网络连接的爆炸式增长和网络服务的多样化将急剧增加网络管理的复杂性。该职业项目旨在开发特定领域的深度强化学习(DRL)方法和系统,以自动化下一代无线边缘计算网络中网络资源和服务的配置、供应和编排。该CAREER项目的成功完成将增进对DRL、通信、计算和网络之间内在关系的理解,并为研究无线边缘计算中基于学习的网络自动化算法和系统奠定坚实的基础。此外,该项目开发的技术将显着降低无线网络的运营成本,从而为包括低收入和偏远社区在内的所有社区提供负担得起的高性能无线连接。此外,该项目还提供跨学科教育,通过将研究融入教育、产学研和跨学科合作,培养掌握先进无线和人工智能(AI)技术的下一代工程师和研究人员。该职业项目旨在发展深度强化学习(DRL)方法和系统,可在无线边缘计算网络中自动进行端到端资源编排。为此,研究了两个基本研究问题:1)如何设计能够有效解决大规模无线边缘计算网络中端到端编排问题的特定领域的DRL;2)如何高效部署基于DRL的编排大规模网络系统的解决方案。为了解决第一个问题,该项目研究了特定领域DRL的状态、奖励函数、训练算法和神经网络的设计,开发了处理基于DRL的端到端资源编排中的各种约束的方法,以避免违反约束。 ,并设计了上下文感知的多智能体 DRL 方法,利用无线边缘计算的领域知识来提高 DRL 的学习效率。针对第二个问题,本项目开发了策略蒸馏方法来解决由于网络模拟与真实网络系统之间的差异而导致的DRL部署问题,并设计了跨尺度知识转移方法来解决由于网络模拟与真实网络系统不匹配而导致的DRL部署问题。小型测试台和大型无线边缘计算系统的尺寸。该项目还开发了增强网络模拟器和边缘计算系统原型,用于评估基于 DRL 的端到端编排解决方案。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tao Han其他文献

Effects of Na+ ions on fluorescence properties of ZnSe quantum dots synthesized in an aqueous system
Na离子对水相体系中合成的ZnSe量子点荧光性质的影响
  • DOI:
    10.1016/j.jallcom.2015.03.206
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Lingling Peng;Tao Han;Liangliang Tian;Litao Yan
  • 通讯作者:
    Litao Yan
Triazole End-Grafting on Cellulose Nanocrystals for Water-Redispersion Improvement and Reactive Enhancement to Nanocomposites
纤维素纳米晶体上的三唑末端接枝可改善纳米复合材料的水再分散性和反应性
  • DOI:
    10.1021/acssuschemeng.8b03407
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Li Le;Tao Han;Wu Bolang;Zhu Ge;Li Ke;Lin Ning
  • 通讯作者:
    Lin Ning
Small Cell Offloading Through Cooperative Communication in Software-Defined Heterogeneous Networks
通过软件定义异构网络中的协作通信实现小蜂窝卸载
  • DOI:
    10.1109/jsen.2016.2581804
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Tao Han;Yuejie Han;Xiaohu Ge;Qiang Li;Jing Zhang;Zhiquan Bai;Lijun Wang
  • 通讯作者:
    Lijun Wang
Fractal behavior of BDS-2 satellite clock offsets and its application to real-time clock offsets prediction
  • DOI:
    10.1007/s10291-019-0950-z
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Tao Han
  • 通讯作者:
    Tao Han
Uniform focusing with extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe
通过超薄整体光纤探头实现光学相干断层扫描的均匀聚焦、扩展深度范围和增加工作距离
  • DOI:
    10.1364/ol.383428
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jianrong Qiu;Tao Han;Zhiyi Liu;Jia Meng;Zhihua Ding
  • 通讯作者:
    Zhihua Ding

Tao Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tao Han', 18)}}的其他基金

Proposal for Support of the Annual Phenomenology Symposium at the University of Pittsburgh: 2022-2024
支持匹兹堡大学年度现象学研讨会的提案:2022-2024
  • 批准号:
    2222878
  • 财政年份:
    2022
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
CNS Core: Small: UbiVision: Ubiquitous Machine Vision with Adaptive Wireless Networking and Edge Computing
CNS 核心:小型:UbiVision:具有自适应无线网络和边缘计算的无处不在的机器视觉
  • 批准号:
    2147821
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
  • 批准号:
    2147624
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Continuing Grant
I-Corps: Low-Cost Holographic TelePresence System
I-Corps:低成本全息网真系统
  • 批准号:
    2049875
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: AirEdge: Robust Airborne Wireless Edge Computing Network using Swarming UAVs
合作研究:CNS 核心:小型:AirEdge:使用集群无人机的强大机载无线边缘计算网络
  • 批准号:
    2147623
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
I-Corps: Low-Cost Holographic TelePresence System
I-Corps:低成本全息网真系统
  • 批准号:
    2153693
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: AirEdge: Robust Airborne Wireless Edge Computing Network using Swarming UAVs
合作研究:CNS 核心:小型:AirEdge:使用集群无人机的强大机载无线边缘计算网络
  • 批准号:
    2008447
  • 财政年份:
    2020
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
CNS Core: Small: UbiVision: Ubiquitous Machine Vision with Adaptive Wireless Networking and Edge Computing
CNS 核心:小型:UbiVision:具有自适应无线网络和边缘计算的无处不在的机器视觉
  • 批准号:
    1910844
  • 财政年份:
    2019
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Proposal for Support of the Annual Phenomenology Symposia at the University of Pittsburgh
支持匹兹堡大学年度现象学研讨会的提案
  • 批准号:
    1723889
  • 财政年份:
    2017
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant
Annual Phenomenology Symposia will held May 5-7, 2014 at the University of Pittsburgh in Pittsburgh, PA.
年度现象学研讨会将于 2014 年 5 月 5 日至 7 日在宾夕法尼亚州匹兹堡的匹兹堡大学举行。
  • 批准号:
    1417115
  • 财政年份:
    2014
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: AutoEdge: Deep Reinforcement Learning Methods and Systems for Network Automation at Wireless Edge
职业:AutoEdge:无线边缘网络自动化的深度强化学习方法和系统
  • 批准号:
    2147624
  • 财政年份:
    2021
  • 资助金额:
    $ 44.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了