SHF: Small: Synthesis of Complex Deep Neural Networks on Distributed Resource-Constrained Devices
SHF:小型:分布式资源受限设备上复杂深度神经网络的综合
基本信息
- 批准号:2006394
- 负责人:
- 金额:$ 49.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep neural network (DNN) machine learning algorithms have become significantly complex in order to address challenges in modern Information Technology applications such as smart city, autonomous driving, pervasive health care, among others. This complexity necessitates execution on high-end computing platforms which typically reside in a cloud infrastructure. Such applications rely on simple Internet of Things (IoT) devices, such as sensors, to gather data, which typically transfer their data via network to the cloud infrastructure for DNN processing and then receive back an inference. However, such an approach is not scalable to the billions of IoT devices that are projected in the near future. In addition, it cannot work when the network infrastructure is unavailable, and may not allow customization to learn from individual needs or for specific environments. In this project, new techniques will be investigated to directly deploy complex DNNs onto simple IoT devices which work in parallel, with the primary goal to perform an inference task as fast as possible. Technology developed in this project will enable rapid development of smart IoT devices, which can serve as fundamental building blocks of next generation smart services. The research outcomes will be disseminated through intellectual property filing, publication, lectures, and software distribution. They will also be integrated as new curriculum materials into existing courses. Graduate and undergraduate students will be involved in the research activities, with an effort to recruit from women and underrepresented minorities.Specific research activities include: (1) exploring a new methodology to synthesize a complex DNN as a collection of smaller DNNs which are mapped to distributed IoT devices; (2) developing "class-aware" structure simplification techniques to aggressively prune any of the small DNNs when the goal is to cover a subset of the label space on a single IoT device and generate a "don't know" signal for the rest; (3) enhancing the inference accuracy via performing low-cost customizations which arise from usage and environmental factors, when implemented locally on each IoT device.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了应对智慧城市、自动驾驶、普及医疗保健等现代信息技术应用中的挑战,深度神经网络 (DNN) 机器学习算法已经变得非常复杂。这种复杂性需要在通常驻留在云基础设施中的高端计算平台上执行。此类应用程序依靠简单的物联网 (IoT) 设备(例如传感器)来收集数据,这些设备通常通过网络将数据传输到云基础设施进行 DNN 处理,然后接收推论。然而,这种方法无法扩展到预计在不久的将来出现的数十亿个物联网设备。此外,当网络基础设施不可用时,它就无法工作,并且可能不允许根据个人需求或针对特定环境进行定制。在该项目中,将研究新技术,将复杂的 DNN 直接部署到并行工作的简单物联网设备上,主要目标是尽快执行推理任务。该项目开发的技术将促进智能物联网设备的快速开发,这些设备可以作为下一代智能服务的基本构建模块。研究成果将通过知识产权申请、出版、讲座和软件分发等方式传播。它们还将作为新课程材料整合到现有课程中。 研究生和本科生将参与研究活动,努力从女性和代表性不足的少数群体中招募人才。具体研究活动包括:(1)探索一种新的方法来合成复杂的 DNN,将其映射为较小的 DNN 的集合。分布式物联网设备; (2) 当目标是覆盖单个物联网设备上标签空间的子集并为其余部分生成“不知道”信号时,开发“类感知”结构简化技术来积极修剪任何小型 DNN ; (3) 在每个物联网设备上本地实施时,通过执行因使用和环境因素而产生的低成本定制来提高推理准确性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和评估进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
$\text{Edge}^{n}$ AI: Distributed Inference with Local Edge Devices and Minimal Latency
$ ext{Edge}^{n}$ AI:使用本地边缘设备和最小延迟进行分布式推理
- DOI:10.1109/asp-dac52403.2022.9712496
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hemmat, Maedeh;Davoodi, Azadeh;Hu, Yu Hen
- 通讯作者:Hu, Yu Hen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Azadeh Davoodi其他文献
Azadeh Davoodi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Azadeh Davoodi', 18)}}的其他基金
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
- 批准号:
2322713 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SaTC: STARSS: Small: Analysis of Security and Countermeasures for Split Manufacturing of Integrated Circuits
SaTC:STARSS:小型:集成电路分片制造的安全性及对策分析
- 批准号:
1812600 - 财政年份:2018
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
SHF: Small: Bridging the Gap Between Global and Detailed Routing of Integrated Circuits
SHF:小型:弥合集成电路全局布线和详细布线之间的差距
- 批准号:
1608040 - 财政年份:2016
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CAREER: Automation Tools for Post-Silicon Debug of Timing Errors in Integrated Circuits
职业:用于集成电路时序错误的硅后调试的自动化工具
- 批准号:
1053496 - 财政年份:2011
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
SHF:Small:Parallel ILP-Based Global Routing on A Grid of Multi-Cores
SHF:Small:多核网格上基于并行 ILP 的全局路由
- 批准号:
0914981 - 财政年份:2009
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CPA-DA: Robust Performance Characterization in Complex VLSI Design Under Variations
CPA-DA:复杂 VLSI 设计变化下的稳健性能表征
- 批准号:
0811082 - 财政年份:2008
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
相似国自然基金
氮杂稀土杂环戊二烯的合成及小分子活化
- 批准号:22371006
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
蛋白质营养调控橘小实蝇雄虫直肠腺中性信息素合成的分子机制
- 批准号:32372520
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向APJ的小分子拮抗剂:设计、合成及其抗早产儿视网膜病变活性研究
- 批准号:82373724
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于界面电子偶极矩调控策略磷酸盐基小分子活化多相催化体系的设计、合成与表征
- 批准号:22362023
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
新型GPR52小分子抑制剂的设计合成
- 批准号:82304307
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SHF: Small: Automated Verification and Synthesis of Input Generators in Property-Based Testing Frameworks
SHF:小型:基于属性的测试框架中输入生成器的自动验证和合成
- 批准号:
2321680 - 财政年份:2023
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Data-Driven Lemma Synthesis for Interactive Proofs
协作研究:SHF:小型:交互式证明的数据驱动引理合成
- 批准号:
2220891 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CCF: SHF: Small: Transformer synthesis
CCF:SHF:小型:变压器综合
- 批准号:
2203399 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Data-Driven Lemma Synthesis for Interactive Proofs
协作研究:SHF:小型:交互式证明的数据驱动引理合成
- 批准号:
2220892 - 财政年份:2022
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant
CISE Core: CCF: SHF: Small: Future-Proof Test Corpus Synthesis for Evolving Software
CISE 核心:CCF:SHF:小型:面向发展软件的面向未来的测试语料库合成
- 批准号:
2120955 - 财政年份:2021
- 资助金额:
$ 49.99万 - 项目类别:
Standard Grant