Elements: Advanced Lossless and Lossy Compression Algorithms for netCDF Datasets in Earth and Engineering Sciences (CANDEE)

元素:地球与工程科学中 netCDF 数据集的高级无损和有损压缩算法 (CANDEE)

基本信息

  • 批准号:
    2004993
  • 负责人:
  • 金额:
    $ 59.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Data compression is used to store and transmit digital data such as music, television, and satellite measurements more efficiently by reducing storage space and download times. The compression software broker that this project provides will facilitate the adoption of modern compression techniques in many branches of science. Compressors come in two flavors: lossless, those that perfectly preserve the original information; and lossy, those that irretrievably discard parts of the "signal" to further improve compression. Modern lossless and lossy compression improvements in efficiency, speed, and fidelity, are striking and will benefit critical research areas by permitting researchers to simulate, store, and analyze phenomena such as stellar evolution, chemical reactions, and hurricane formation at finer detail than before, with no extra storage costs. Since digital storage consumes power, better compression also reduces power consumption and associated greenhouse gas emissions. This project will develop the software infrastructure necessary for scientific researchers to seamlessly shift their applications to produce and use data stored with state-of-the-art lossless techniques, and by new lossy techniques that are more accurate than any others.The two most widely-used self-describing dataset storage formats, HDF5 and netCDF4, support by default only one patent unencumbered lossless compression format, the venerable DEFLATE algorithm standardized in the 1990s. Our project will develop a dynamic and extensible software library of modern COmpressors and DECompressors (codecs) for scientific data called the Community Codec Repository (CCR). We will populate the CCR with cutting-edge open-source compression technology, including the LZ4, Facebook's Zstandard, and Google's Snappy codecs, and will implement default netCDF support for the CCR. Sequential lossy-then-lossless compression improves both the size and speed of compression/decompression yet is currently tedious to perform. We will implement a user-friendly method to "chain" codecs into sequential operations in memory (no intermediate files required) in our widely used netCDF Operators software package. We will also produce a new precision-preserving lossy codec, Granular Bit Grooming, that has unsurpassed compression ratio and statistical accuracy. Technical success will be evaluated by the size and speed improvements of compressing a prototypical geoscience/engineering "big data" project, the Coupled Model Intercomparison Project version 6 (CMIP6).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据压缩用于通过减少存储空间和下载时间来更有效地存储和传输数字数据,例如音乐、电视和卫星测量数据。该项目提供的压缩软件代理将促进现代压缩技术在许多科学分支中的采用。压缩器有两种类型:无损,完美保留原始信息;有损,不可挽回地丢弃部分“信号”以进一步提高压缩。现代无损和有损压缩在效率、速度和保真度方面的改进是惊人的,并将使研究人员能够比以前更详细地模拟、存储和分析恒星演化、化学反应和飓风形成等现象,从而使关键研究领域受益。无需额外的存储成本。由于数字存储会消耗电力,因此更好的压缩还可以减少电力消耗和相关的温室气体排放。该项目将开发必要的软件基础设施,使科学研究人员能够无缝地将其应用程序转变为生成和使用通过最先进的无损技术以及比任何其他技术更准确的新有损技术存储的数据。这两个最广泛- 使用自描述数据集存储格式 HDF5 和 netCDF4,默认情况下仅支持一种专利无阻碍无损压缩格式,即 20 世纪 90 年代标准化的古老 DEFLATE 算法。我们的项目将为科学数据开发一个动态且可扩展的现代压缩器和解压缩器(编解码器)软件库,称为社区编解码器存储库(CCR)。我们将为 CCR 填充尖端的开源压缩技术,包括 LZ4、Facebook 的 Zstandard 和 Google 的 Snappy 编解码器,并将为 CCR 实现默认的 netCDF 支持。顺序有损然后无损压缩提高了压缩/解压缩的大小和速度,但目前执行起来很乏味。我们将在广泛使用的 netCDF Operators 软件包中实现一种用户友好的方法,将编解码器“链接”到内存中的顺序操作(不需要中间文件)。我们还将生产一种新的保留精度的有损编解码器,Granular Bit Grooming,它具有无与伦比的压缩比和统计精度。技术成功将通过压缩原型地球科学/工程“大数据”项目(耦合模型比对项目版本 6 (CMIP6))的大小和速度改进来评估。该奖项反映了 NSF 的法定使命,并被认为值得通过评估获得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Zender其他文献

Charles Zender的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Zender', 18)}}的其他基金

Snow Process Studies and Modeling to Improve Arctic Climate Prediction
降雪过程研究和建模以改善北极气候预测
  • 批准号:
    0714088
  • 财政年份:
    2007
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Continuing Grant
SGER: Improving Community Climate System Model (CCSM) Snow/Ice Radiative and Heating Processes and Asssessing the Importance of the Soot Albedo Effect
SGER:改进社区气候系统模型 (CCSM) 雪/冰辐射和加热过程并评估烟灰反照率效应的重要性
  • 批准号:
    0503148
  • 财政年份:
    2005
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
SEI(GEO): Scientific Data Operators Optimized for Efficient Distributed Interactive and Batch Analysis of Tera-Scale Geophysical Data
SEI(GEO):针对兆级地球物理数据的高效分布式交互式和批量分析而优化的科学数据运算符
  • 批准号:
    0431203
  • 财政年份:
    2004
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Acquisition of an Earth System Modeling Facility for Coupled Climate, Chemistry, and Biogeochemistry Studies
获取用于气候、化学和生物地球化学耦合研究的地球系统模拟设施
  • 批准号:
    0321380
  • 财政年份:
    2003
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Measurements from the Columbia Plateau Eolian System to Improve Global-Scale Models of Mineral-Dust Aerosols
合作研究:利用哥伦比亚高原风成系统的测量来改进全球尺度的矿尘气溶胶模型
  • 批准号:
    0214430
  • 财政年份:
    2002
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

不确定单机批调度及其结合先进过程控制(APC)在半导体制造中的应用
  • 批准号:
    72301177
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进深度学习模型的面向临床多模态乳腺癌诊断方法研究
  • 批准号:
    62371312
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
  • 批准号:
    52336006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
基于物理模型融合深度学习的先进合金极限条件应力应变行为预测
  • 批准号:
    52311530082
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
  • 批准号:
    12375328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
  • 批准号:
    10102690
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    EU-Funded
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    EU-Funded
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
  • 批准号:
    10071797
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Collaborative R&D
Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
  • 批准号:
    10089184
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 59.99万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了