Collaborative research: Mid-IR Photonic Funnels: Coupling, emitting, and re-shaping mid-IR photons in the nano-world

合作研究:中红外光子漏斗:在纳米世界中耦合、发射和重塑中红外光子

基本信息

  • 批准号:
    2004298
  • 负责人:
  • 金额:
    $ 26.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Progress in the fields of materials science, nanotechnology, healthcare, and communications all require precise control and understanding of light interaction with nanoscale objects. Unfortunately, the phenomenon known as the diffraction limit prevents focusing of light to areas smaller than approximately half the wavelength of the light. For thermal (mid-infrared) radiation, the diffraction limit-scale is roughly five microns, much larger than 10-100’s-nanometer size of semiconductor electronic components, viruses, and other objects of interest. In this collaborative research the investigators develop novel structures, photonic funnels, that eliminate the diffraction limit and efficiently guide the optical signals between free space and nano-scale areas. Theoretically, the investigators develop equations and computer codes to model propagation of light through the funnels, as well as the emission of light by nanoscale objects positioned within, and in proximity to, the funnels. Experimentally, the researchers develop procedures to fabricate the funnels, integrate light emitters, and analyze light propagation through, and from, these structures. The exploration and development of these novel composite materials have the potential to open new avenues in high-resolution probing of biological, electronic, and optical structures, and in engineering optical interactions with these structures. In addition, the investigators plan for outreach and educational activities aimed at both high-school and college-level students, as well as personnel exchange and training across the disciplines.This collaborative project aims to address one of the fundamental limits of light-matter interaction, the diffraction limit. The research team utilizes recently developed composite optical materials with highly doped plasmonic inclusions, hyperbolic metamaterials, and develops tools for the design, fabrication, and analysis of conical structures with hyperbolic cores, photonic funnels, in the important mid-infrared frequency range. The strong dielectric anisotropy of hyperbolic materials postpones the onset of the diffraction limit inside the funnels and thus enables propagation of light between micro- and nano-scales. The research team analyzes, theoretically and experimentally, light-matter interaction inside, and in close proximity to, the photonic funnels. Specifically, the team develops theoretical tools capable of accurate modelling of light generation from within, and in the near field of, the funnels, as well as of light propagation through the funnels. In parallel, the team develops fabrication and characterization procedures to accurately control the geometry of the funnels and to understand their optical response. The collaborative feedback within the team enables comprehensive development of a novel material platform offering unique opportunities for light manipulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
材料科学、纳米技术、医疗保健和通信领域的进步都需要精确控制和理解光与纳米级物体的相互作用,不幸的是,被称为衍射极限的现象阻止了光聚焦到小于大约一半波长的区域。对于热(中红外)辐射,衍射极限尺寸大约为 5 微米,比研究人员在这项合作研究中开发的半导体电子元件、病毒和其他感兴趣物体的 10-100 纳米尺寸大得多。新颖的结构——光子漏斗,可以消除衍射极限并有效地引导自由空间和纳米级区域之间的光信号。理论上,研究人员开发了方程和计算机代码来模拟光通过漏斗的传播以及光的发射。通过实验,研究人员开发了制造漏斗、集成光发射器并分析通过和来自这些结构的光传播的程序。新型复合材料有可能在生物、电子和光学结构的高分辨率探测以及与这些结构的光学相互作用方面开辟新的途径。此外,研究人员计划针对高中开展外展和教育活动。该合作项目旨在解决光与物质相互作用的基本限制之一——衍射极限。该研究团队利用最近开发的高掺杂复合光学材料。等离子体包裹体,双曲超材料,并开发了用于设计、制造和分析具有双曲核、光子漏斗的锥形结构的工具,在重要的中红外频率范围内,双曲材料的强介电各向异性推迟了漏斗内衍射极限的出现。从而使光在微米和纳米尺度之间传播,在理论上和实验上,光与物质在光子漏斗内部和附近的相互作用。与此同时,该团队开发了理论工具,能够对漏斗内部和近场中的光产生以及通过漏斗的特定几何形状的光传播进行精确建模,并了解其光学响应。团队内部的协作反馈使得能够全面开发反映光操纵独特机会的新型材料平台。该奖项符合 NSF 的法定使命,并且通过使用基金会的智力价值进行评估,被认为值得支持。以及更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subdiffraction Limited Photonic Funneling of Light
光的子衍射有限光子漏斗
  • DOI:
    10.1002/adom.202001321
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Li, Kun;Simmons, Evan;Briggs, Andrew;Nordin, Leland;Xu, Jiaming;Podolskiy, Viktor;Wasserman, Daniel
  • 通讯作者:
    Wasserman, Daniel
Temporal Shaping of Light at the Nanoscale with Photonic Funnels
利用光子漏斗在纳米尺度上对光进行时间整形
  • DOI:
    10.1364/cleo_fs.2023.ftu4d.7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    LaMountain, J.;Raju, A.;Briggs, A.;Wasserman, D.;Podolskiy, V.A.
  • 通讯作者:
    Podolskiy, V.A.
Understanding the Limits of Sub-diffraction Focusing of Light with Photonic Funnels
了解光子漏斗光亚衍射聚焦的局限性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Simmons, Kun Li
  • 通讯作者:
    E. Simmons, Kun Li
Controlling Light Emission with Photonic Funnels
用光子漏斗控制光发射
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. LaMountain, E. Simmons
  • 通讯作者:
    J. LaMountain, E. Simmons
Hypergrating for focusing vortex beam below diffraction limit
用于将涡旋光束聚焦到衍射极限以下的超光栅
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Li, E. Simmons
  • 通讯作者:
    W. Li, E. Simmons
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viktor Podolskiy其他文献

Viktor Podolskiy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viktor Podolskiy', 18)}}的其他基金

Collaborative Research: DMREF: Transforming Photonics and Electronics with Digital Alloy Materials
合作研究:DMREF:用数字合金材料改变光子学和电子学
  • 批准号:
    2118787
  • 财政年份:
    2021
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: III: Exploring Physics Guided Machine Learning for Accelerating Sensing and Physical Sciences
EAGER:协作研究:III:探索物理引导机器学习以加速传感和物理科学
  • 批准号:
    2026703
  • 财政年份:
    2020
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Semiconductor Heterostructure Platform for Active Nonlocal Plasmonic and Hyperbolic Materials
DMREF:合作研究:活性非局域等离子体和双曲材料的半导体异质结构平台
  • 批准号:
    1629330
  • 财政年份:
    2016
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
I-Corps: Composite Photonics
I-Corps:复合光子学
  • 批准号:
    1659019
  • 财政年份:
    2016
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Materials World Network: Collaborative Research: Understanding the Optical Response of Designer Epsilon-Near-Zero Materials
材料世界网络:协作研究:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1209761
  • 财政年份:
    2012
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Continuing Grant
QMHP: Multichannel interscale mixing: towards highly-parallel subwavelength imaging and focusing of light
QMHP:多通道尺度混合:实现高度并行的亚波长成像和光聚焦
  • 批准号:
    1102183
  • 财政年份:
    2011
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Nanoscale photonic circuits in negative-refraction waveguides
负折射波导中的纳米级光子电路
  • 批准号:
    1041820
  • 财政年份:
    2010
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Active Plasmonics for Mid-Infrared Sensing
合作研究:用于中红外传感的主动等离子体
  • 批准号:
    0925542
  • 财政年份:
    2009
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Nanoscale photonic circuits in negative-refraction waveguides
负折射波导中的纳米级光子电路
  • 批准号:
    0724763
  • 财政年份:
    2007
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant

相似国自然基金

个体创业导向在数字化公司创业中的展现与效应研究:基于注意力基础观
  • 批准号:
    72302074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
拟南芥TTM3在网格蛋白介导的内吞作用和极性生长素运输中功能的研究
  • 批准号:
    32370325
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
  • 批准号:
    72303209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HOXBLINC lncRNA在B-ALL发生与耐药中的功能和机制研究
  • 批准号:
    82370177
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
氯盐类型对超高性能混凝土基体中氯离子结合与钢筋锈蚀影响机理研究
  • 批准号:
    52308249
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: The influence of mesoscale eddies on deep-sea dynamics and implications for larval connectivity along mid-ocean ridges
合作研究:中尺度涡流对深海动力学的影响以及对洋中脊幼虫连通性的影响
  • 批准号:
    2318965
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Processes and Timescales of Basalt Petrogenesis and Oceanic Crustal Construction at Slow-Spreading Mid-Ocean Ridges
合作研究:了解缓慢扩张的大洋中脊玄武岩成岩和洋壳构造的过程和时间尺度
  • 批准号:
    2317704
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Training the Next Generation of Innovative and Collaborative Patient-Oriented Researchers to Reduce Obesity and Improve Cardiometabolic Health
培训下一代创新和协作的以患者为中心的研究人员,以减少肥胖并改善心脏代谢健康
  • 批准号:
    10721553
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
Collaborative Research: Unraveling North American Ice-Sheet Dynamics and Regional Sea-Level Change along the U.S. Mid-Atlantic over the Last Glacial Cycle
合作研究:揭示末次冰期期间北美冰盖动力学和美国大西洋中部沿线区域海平面变化
  • 批准号:
    2244721
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
Collaborative Research: The influence of mesoscale eddies on deep-sea dynamics and implications for larval connectivity along mid-ocean ridges
合作研究:中尺度涡流对深海动力学的影响以及对洋中脊幼虫连通性的影响
  • 批准号:
    2318964
  • 财政年份:
    2023
  • 资助金额:
    $ 26.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了