Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
基本信息
- 批准号:1955246
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical:The big data revolution has created a critical need for new computing paradigms to efficiently extract valuable information from large datasets. In existing computing systems, data is constantly transferred between the computation and memory units. This so-called memory bottleneck limits their energy efficiency and speed. In contrast, computation and memory in the human brain (neurons and synapses) are closely and densely interconnected. This gives rise to the brain’s extremely low power consumption at ~20W. Inspired by the brain, neuromorphic computing and artificial neural networks have recently attracted immense interest. In particular, deep neural networks (DNNs) can execute complex processing tasks such as pattern recognition and image reconstruction. However, DNNs are computationally intensive and power hungry. This makes it impractical for them to be scaled up to the level of the complexity for true artificial intelligence (AI). In this project, the team will develop a novel artificial synapse for deep neural networks. This prototypical synapse will offer low power consumption, high precision, good scalability, and great potential for large-scale integration. This work can lead to significant improvement in energy efficiency, bandwidth, and performance for deep learning algorithms. The research outcome can lead to the wide use of AI for both high-performance computing and low-power flexible electronics. This project can revolutionize society through advances in healthcare, self-driving vehicles, and autonomous manufacturing. The team will work closely with their local communities to attract students to pursue engineering careers, especially those from underrepresented groups. Activities will include laboratory demonstrations, design projects, summer internships, and career workshops.Technical:The objective of this project is to develop scalable electrochemical two-dimensional (2D) synaptic arrays with high-precision and low-power for advanced hardware acceleration of deep neural networks (DNNs) with orders of magnitude improvements in energy and speed. While binary SRAM cells have shown promising performance for DNN hardware acceleration, its inherent limitations in power and area make it impractical to scale up to the complexity level required for large-scale problems and/or datasets. In this project, the team will take a holistic approach to develop scalable electrochemical 2D synaptic arrays with high precision, lower-power, good linearity, low variations, and CMOS compatibility for large-scale integration. The team will carry out the following three research tasks: (1) device-level optimization in device precision, dynamic range, and scaling; (2) array-level demonstration by building synaptic arrays, lowering device variations, and designing peripheral circuits; (3) system-level integration via building device models, implementing computing-in-memory (CIM), and demonstrating on-chip learning for pixel-to-pixel applications. This work will provide a low-power and scalable framework for the hardware acceleration of DNNs, paving the ways towards the ubiquitous use of artificial intelligence (AI) in both high-performance computers and low-power embedded systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:大数据革命创造了对新计算范式的迫切需求,以从大型数据集中有效提取有价值的信息。在现有的计算系统中,数据在计算和内存单元之间不断传输。这种所谓的内存瓶颈限制了他们的能源效率和速度。相比之下,人脑中的计算和记忆(神经元和突触)紧密相互联系。这引起了大脑在约20周的极低功耗。受大脑的启发,神经形态计算和人造神经元网络最近引起了极大的兴趣。特别是,深神经网络(DNN)可以执行复杂的处理任务,例如模式识别和图像重建。但是,DNN在计算密集型和饥饿方面是饥饿的。这使得他们不切实际地扩展到真正人工智能(AI)的复杂性水平。在这个项目中,团队将开发一个新型的人工突触,用于深层神经元网络。该原型突触将提供低功耗,高精度,良好的可扩展性和巨大的大规模集成潜力。这项工作可以导致深度学习算法的能源效率,带宽和性能的显着提高。研究结果可能导致广泛用于高性能计算和低功率柔性电子产品。该项目可以通过医疗保健,自动驾驶汽车和自动制造业的进步来彻底改变社会。该团队将与当地社区紧密合作,以吸引学生从事实践工程职业,尤其是来自代表性不足的团体的工程职业。活动将包括实验室演示,设计项目,暑期实习和职业研讨会。技术:该项目的目的是开发可扩展的电化学二维突触阵列(2D)突触阵列,具有高精度和低功率的高级硬件加速,以提高深度神经网络(DNNS)(DNNS),并提高能量和速度的速度。虽然二进制SRAM单元显示了DNN硬件加速度的承诺性能,但其功率和区域的继承限制使得扩展到大规模问题和/或数据集所需的复杂性水平是不切实际的。在这个项目中,团队将采用一种整体方法来开发可扩展的电化学2D合成阵列,具有高精度,较低功率,良好的线性,较低的变化和CMOS兼容性以进行大规模集成。团队将执行以下三项研究任务:(1)设备精度,动态范围和缩放的设备级优化; (2)通过构建合成阵列,降低设备变化和设计外围电路来进行阵列级别的演示; (3)通过构建设备模型进行系统级集成,实现内存计算(CIM),并为像素到像素应用程序演示芯片学习。这项工作将为DNN的硬件加速提供一个低功率和可扩展的框架,粘贴了在高性能计算机和低功率嵌入式系统中无处不在使用人工智能(AI)的方法。这项奖项反映了NSF的法定任务,并通过评估了基金会的智力效果,并通过评估了基金会的范围。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Building Efficient and Robust Neural Network Designs
- DOI:10.1109/ieeeconf56349.2022.10051891
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Xiaoxuan Yang;Huanrui Yang;Jingchi Zhang;Hai Helen Li;Yiran Chen
- 通讯作者:Xiaoxuan Yang;Huanrui Yang;Jingchi Zhang;Hai Helen Li;Yiran Chen
HERO: hessian-enhanced robust optimization for unifying and improving generalization and quantization performance
HERO:hessian 增强的鲁棒优化,用于统一和提高泛化和量化性能
- DOI:10.1145/3489517.3530678
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Huanrui;Yang, Xiaoxuan;Gong, Neil Zhenqiang;Chen, Yiran
- 通讯作者:Chen, Yiran
SpikeSen: Low-Latency In-Sensor-Intelligence Design With Neuromorphic Spiking Neurons
SpikeSen:具有神经形态尖峰神经元的低延迟传感器内智能设计
- DOI:10.1109/tcsii.2023.3235888
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Ziru;Zheng, Qilin;Chen, Yiran;Li, Hai
- 通讯作者:Li, Hai
Photonic Bayesian Neural Network Using Programmed Optical Noises
- DOI:10.1109/jstqe.2022.3217819
- 发表时间:2023-03
- 期刊:
- 影响因子:4.9
- 作者:Changming Wu;Xiaoxuan Yang;Yiran Chen;Mo Li
- 通讯作者:Changming Wu;Xiaoxuan Yang;Yiran Chen;Mo Li
DyNNamic: Dynamically Reshaping, High Data-Reuse Accelerator for Compact DNNs
- DOI:10.1109/tc.2022.3184272
- 发表时间:2023-03
- 期刊:
- 影响因子:3.7
- 作者:Edward Hanson;Shiyu Li;Xuehai Qian;H. Li;Yiran Chen
- 通讯作者:Edward Hanson;Shiyu Li;Xuehai Qian;H. Li;Yiran Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiran Chen其他文献
Improving Multilevel Writes on Vertical 3-D Cross-Point Resistive Memory
改进垂直 3D 交叉点电阻存储器的多级写入
- DOI:
10.1109/tcad.2020.3006188 - 发表时间:
2021-04 - 期刊:
- 影响因子:2.9
- 作者:
Chengning Wang;Dan Feng;Wei Tong;Yu Hua;Jingning Liu;Bing Wu;Wei Zhao;Linghao Song;Yang Zhang;Jie Xu;Xueliang Wei;Yiran Chen - 通讯作者:
Yiran Chen
Shift-Optimized Energy-Efficient Racetrack-Based Main Memory
基于移位优化的节能赛道主存储器
- DOI:
10.1142/s0218126618500810 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
王党辉;马浪;张萌;安建峰;Hai Helen Li;Yiran Chen - 通讯作者:
Yiran Chen
FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
- DOI:
10.1109/tcad.2016.2619480 - 发表时间:
2017-07 - 期刊:
- 影响因子:2.9
- 作者:
Jie Guo;Wujie Wen;Jingtong Hu;王党辉;Hai Lu;Yiran Chen - 通讯作者:
Yiran Chen
TriZone: A Design of MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations
TriZone:MLC STT-RAM 缓存设计,可实现性能、能耗和可靠性的综合优化
- DOI:
10.1109/tcad.2017.2783860 - 发表时间:
2018-10 - 期刊:
- 影响因子:2.9
- 作者:
Zitao Liu;Mengjie Mao;Tao Liu;Xue Wang;WUjie Wen;Yiran Chen;Hai Li;王党辉;Yukui Pei;Ning Ge - 通讯作者:
Ning Ge
A lightweight progress maximization scheduler for non-volatile processor under unstable energy harvesting
不稳定能量收集下非易失性处理器的轻量级进度最大化调度器
- DOI:
10.1145/3078633.3081038 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chen Pan;Mimi Xie;Yongpan Liu;Yanzhi Wang;C. Xue;Yuangang Wang;Yiran Chen;J. Hu - 通讯作者:
J. Hu
Yiran Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiran Chen', 18)}}的其他基金
Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
- 批准号:
2341163 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
- 批准号:
2220601 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
- 批准号:
2120333 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
- 批准号:
2112562 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Cooperative Agreement
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
- 批准号:
2140247 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
- 批准号:
2106828 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
- 批准号:
2027324 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937435 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
- 批准号:
1925514 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
新骨架紫杉烷二萜baccataxane的化学合成、衍生化和降糖活性研究
- 批准号:82373758
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
二元金属原子团簇协同催化多硫化锂转化机制研究
- 批准号:22379001
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二价染色质调控拟南芥响应发育与环境信号的分子与表观遗传机理研究
- 批准号:32330007
- 批准年份:2023
- 资助金额:219 万元
- 项目类别:重点项目
非均质玄武岩中二氧化碳快速矿化反应运移机理研究
- 批准号:42307271
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: EPIIC: Managing Culture Change on Two Fronts: Strengthening Our Capacity to Develop Partnerships
合作研究:EPIIC:从两个方面管理文化变革:加强我们发展伙伴关系的能力
- 批准号:
2331373 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FO: Modified two-photon microscope with high-speed electrowetting array for imaging voltage transients in cerebellar molecular layer interneurons
合作研究:NCS-FO:带有高速电润湿阵列的改良双光子显微镜,用于对小脑分子层中间神经元的电压瞬变进行成像
- 批准号:
2319406 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: 4D Visualization and Modeling of Two-Phase Flow and Deformation in Porous Media beyond the Realm of Creeping Flow
合作研究:蠕动流领域之外的多孔介质中两相流和变形的 4D 可视化和建模
- 批准号:
2326113 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant