RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
基本信息
- 批准号:1937435
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in machine learning are fueling a growing demand for intelligent Internet of Things (IoT), i.e., edge network applications. Many of them, such as autonomous vehicles, robots, and healthcare wearables, require real-time and in-situ learning to be perceived as truly intelligent. However, the limited computing and energy resources available at the edge device (e.g., mobile devices, sensors) stand at odds with the massive and growing cost of state-of-the-art machine learning training, posing a grand challenge for real-time machine learning (RTML) at the edge. This goal of this project is to foster a systematic breakthrough in achieving efficient online training of state-of-the-art machine learning algorithms in pervasive resource-constrained platforms and applications. An order of magnitude advance in RTML would enable numerous edge devices to proactively interpret and learn from new data, improve their own performance using what they have learned, and adapt to dynamic environments, all in real time. Success in this project will enable truly intelligent edge devices to penetrate all walks of life and thus generate significant impacts on societies and economies. This project will lead to new courses and open-education resources that can attract diverse groups of students and eventually deliver a platform for inclusion and innovation. The project addresses the RTML grand challenge using a three-pronged 'co-design' approach that seamlessly integrates algorithm, architecture, and circuit-level innovations. Specifically, at the algorithm level, an efficient training framework for RTML, for which trained models are also natively efficient for inference, will be established. Aggressive time and energy reductions can be achieved, at first by improving general training techniques, and then by focusing particularly on online learning and adaptation. At the architecture level, the project will first target reducing the high cost of data movement by trading it for lower-cost computation, and then generate optimal dataflows and hardware architectures to maximize the joint benefits of algorithms and hardware. At the circuit level, the project will leverage adaptive low-precision algorithms and architectures to design ultra-energy-efficient mixed-signal compute fabrics. Statistical computing techniques will be incorporated to demonstrate efficient, scalable, and robust machine learning chips. Finally, at the system level, an integration effort will be included to aid the realization of realistic system goals and to evaluate the innovations of the three core thrusts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习的最新进展正在推动对智能互联网(IoT)(即边缘网络应用程序)的不断增长的需求。其中许多人,例如自动驾驶汽车,机器人和医疗保健可穿戴设备,都需要实时和原位学习才能被认为是真正聪明的。但是,在边缘设备(例如,移动设备,传感器)可用的有限计算和能源资源与最先进的机器学习培训的巨大成本矛盾,对Edge的实时机器学习(RTML)构成了巨大的挑战。该项目的这个目标是在对普遍存在的资源约束平台和应用程序中的最先进的机器学习算法进行有效的在线培训方面取得系统的突破。 RTML中的一个数量级进步将使众多边缘设备能够从新数据中主动解释和学习,使用他们学到的知识来提高自己的性能,并实时适应动态环境。该项目的成功将使真正的智能边缘设备能够穿透各行各业,从而对社会和经济产生重大影响。该项目将导致新课程和开放式教育资源,这些资源可以吸引各种学生,并最终提供一个包容和创新的平台。 该项目使用三管齐下的“共同设计”方法解决了RTML大挑战,该方法无缝地集成了算法,建筑和电路级创新。具体而言,在算法级别上,RTML有效的训练框架将建立训练有素的模型也是如此有效的推理。首先,可以通过改进一般培训技术,然后专门针对在线学习和适应来实现积极的时间和减少能量。在体系结构级别,该项目将首先定位通过将其交易以降低成本计算,然后生成最佳数据流和硬件体系结构来最大程度地利用算法和硬件的关节优势,从而降低了数据移动的高成本。在电路级别,该项目将利用自适应的低精度算法和体系结构来设计超能量的混合信号计算织物。统计计算技术将合并,以证明有效,可扩展和健壮的机器学习芯片。最后,在系统层面上,将包括一项集成努力,以帮助实现现实的系统目标并评估三个核心力量的创新。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点评估来支持的,并具有更广泛的影响标准。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PENNI: Pruned Kernel Sharing for Efficient CNN Inference
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Shiyu Li;Edward Hanson;H. Li;Yiran Chen
- 通讯作者:Shiyu Li;Edward Hanson;H. Li;Yiran Chen
DyNNamic: Dynamically Reshaping, High Data-Reuse Accelerator for Compact DNNs
- DOI:10.1109/tc.2022.3184272
- 发表时间:2023-03
- 期刊:
- 影响因子:3.7
- 作者:Edward Hanson;Shiyu Li;Xuehai Qian;H. Li;Yiran Chen
- 通讯作者:Edward Hanson;Shiyu Li;Xuehai Qian;H. Li;Yiran Chen
NASRec: Weight Sharing Neural Architecture Search for Recommender Systems
NASRec:推荐系统的权重共享神经架构搜索
- DOI:10.1145/3543507.3583446
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Tunhou;Cheng, Dehua;He, Yuchen;Chen, Zhengxing;Dai, Xiaoliang;Xiong, Liang;Yan, Feng;Li, Hai;Chen, Yiran;Wen, Wei
- 通讯作者:Wen, Wei
PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
PIDS:3D 点云的联合点交互维度搜索
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Tunhou;Ma, Mingyuan;Yan, Feng;Li, Hai;Chen, Yiran
- 通讯作者:Chen, Yiran
ESCALATE: Boosting the Efficiency of Sparse CNN Accelerator with Kernel Decomposition
- DOI:10.1145/3466752.3480043
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Shiyu Li;Edward Hanson;Xuehai Qian;H. Li;Yiran Chen
- 通讯作者:Shiyu Li;Edward Hanson;Xuehai Qian;H. Li;Yiran Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yiran Chen其他文献
A lightweight progress maximization scheduler for non-volatile processor under unstable energy harvesting
不稳定能量收集下非易失性处理器的轻量级进度最大化调度器
- DOI:
10.1145/3078633.3081038 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chen Pan;Mimi Xie;Yongpan Liu;Yanzhi Wang;C. Xue;Yuangang Wang;Yiran Chen;J. Hu - 通讯作者:
J. Hu
TriZone: A Design of MLC STT-RAM Cache for Combined Performance, Energy, and Reliability Optimizations
TriZone:MLC STT-RAM 缓存设计,可实现性能、能耗和可靠性的综合优化
- DOI:
10.1109/tcad.2017.2783860 - 发表时间:
2018-10 - 期刊:
- 影响因子:2.9
- 作者:
Zitao Liu;Mengjie Mao;Tao Liu;Xue Wang;WUjie Wen;Yiran Chen;Hai Li;王党辉;Yukui Pei;Ning Ge - 通讯作者:
Ning Ge
Inferring the Ideological Affiliations of Political Committees Via Financial Contributions Networks
通过捐款网络推断政治委员会的意识形态归属
- DOI:
10.3386/w24130 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yiran Chen;Hanming Fang - 通讯作者:
Hanming Fang
FlexLevel NAND Flash Storage System Design to Reduce LDPC Latency
FlexLevel NAND 闪存存储系统设计可减少 LDPC 延迟
- DOI:
10.1109/tcad.2016.2619480 - 发表时间:
2017-07 - 期刊:
- 影响因子:2.9
- 作者:
Jie Guo;Wujie Wen;Jingtong Hu;王党辉;Hai Lu;Yiran Chen - 通讯作者:
Yiran Chen
Yiran Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yiran Chen', 18)}}的其他基金
Conference: 2023 CISE Computer System Research PI Meeting
会议:2023 CISE计算机系统研究PI会议
- 批准号:
2341163 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2328805 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Workshop Proposal: Redefining the Future of Computer Architecture from First Principles
研讨会提案:从第一原理重新定义计算机架构的未来
- 批准号:
2220601 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CCRI:NEW: Research Infrastructure for Real-Time Computer Vision and Decision Making via Mobile Robots
合作研究:CCRI:新:通过移动机器人进行实时计算机视觉和决策的研究基础设施
- 批准号:
2120333 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
AI Institute for Edge Computing Leveraging Next Generation Networks (Athena)
利用下一代网络的人工智能边缘计算研究所 (Athena)
- 批准号:
2112562 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Cooperative Agreement
EAGER: Distributed Heterogeneous Data Analytics via Federated Learning
EAGER:通过联邦学习进行分布式异构数据分析
- 批准号:
2140247 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Revitalizing EDA from a Machine Learning Perspective
合作研究:SHF:媒介:从机器学习的角度振兴 EDA
- 批准号:
2106828 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Two-dimensional Synaptic Array for Advanced Hardware Acceleration of Deep Neural Networks
合作研究:用于深度神经网络高级硬件加速的二维突触阵列
- 批准号:
1955246 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Workshop Proposal: Processing-In-Memory (PIM) Technology - Grand Challenges and Applications
研讨会提案:内存处理 (PIM) 技术 - 重大挑战和应用
- 批准号:
2027324 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: Planning to Develop a Low-Power Computer Vision Platform to Enhance Research in Computing Systems
CCRI:规划:协作研究:规划开发低功耗计算机视觉平台以加强计算系统研究
- 批准号:
1925514 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于深度学习的大尺度重磁异常正反演研究
- 批准号:42374174
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于环肽的穴状大环超分子体系构筑及其分子选择键合研究
- 批准号:22371148
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
环境扰动与有限测量下大天线高精度跟踪指向控制技术的研究
- 批准号:12303099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于力学克尔效应的大带宽、低功耗片上集成光学非互易器件研究
- 批准号:62305316
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青少年肌阵挛性癫痫发作控制与复发的脑网络系统动力稳定性大时间尺度演化机制研究
- 批准号:82301640
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2053279 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937592 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937294 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
1937588 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant