Analytic, Geometric, and Probabilistic Aspects of High-Dimensional Phenomena

高维现象的分析、几何和概率方面

基本信息

  • 批准号:
    1955175
  • 负责人:
  • 金额:
    $ 20.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The complexity of mathematical objects arising in geometry and probability increases as the dimension of the object increases. This is a result of a growing number of possible configurations as well as a lack of intuition, which is primarily built on low-dimensional examples. Sometimes, due to certain underlying fundamental properties such as symmetry or independence of these objects, we witness an order and universality present in high dimensions. This project aims to deepen our mathematical understanding of such phenomena in several contexts, such as volumetric aspects of high-dimensional random polytopes (geometric objects with "flat" sides), or the sums of many random quantities in which each quantity comes with a deterministic weight. In addition to their fundamental interest, such problems are motivated by, and often find applications in, related areas of statistics, computer science, big data and machine learning. A vital part of this project is the student training and educational activities that will result. More specifically, this project is devoted to three topics related to analytic, geometric and probabilistic aspects of high-dimensional phenomena: estimates for moments and tails of sums of random variables, thresholds for the volume of random polytopes, and efficient coverings of convex sets with its homothetic copies (the Hadwiger covering/illumination problem). Our work on probabilistic comparison inequalities, involving analytic and probabilistic techniques such as chaining, will help us understand the concentration of measure phenomena for random sums, with applications to the geometry of Banach spaces. Volume threshold phenomena of random polytopes in high dimensions have been established and satisfactorily understood only in the presence of a product structure or rotational symmetry. The lack of these two in our problems creates a need for new, more robust techniques and approaches. The illumination conjecture touches upon very basic concepts: coverings and intersections of convex sets. This project will exploit recent developments in geometric functional analysis to open up perspectives on improving best asymptotic bounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在几何形状和概率中产生的数学对象的复杂性随着对象的尺寸的增加而增加。这是由于越来越多的可能配置以及缺乏直觉的结果,这主要建立在低维示例上。有时,由于某些潜在的基本属性,例如对称性或这些对象的独立性,因此我们目睹了在高维度中存在的秩序和普遍性。该项目的目的是在几种情况下加深我们对这种现象的数学理解,例如高维随机多型的体积方面(具有“平坦”侧面的几何对象),或者每个数量的许多随机数量的总和都带有确定性的重量。除了基本的兴趣外,此类问题还由统计,计算机科学,大数据和机器学习的相关领域的应用,并经常在相关领域中找到应用。该项目的重要组成部分是将导致的学生培训和教育活动。 More specifically, this project is devoted to three topics related to analytic, geometric and probabilistic aspects of high-dimensional phenomena: estimates for moments and tails of sums of random variables, thresholds for the volume of random polytopes, and efficient coverings of convex sets with its homothetic copies (the Hadwiger covering/illumination problem).我们在概率比较不平等方面的工作,涉及分析性和概率技术(例如链接),将有助于我们了解随机总和的测量现象集中度,并应用于Banach空间的几何形状。仅在产物结构或旋转对称性的存在下,已经建立了高维的随机多型的体积阈值现象。在我们的问题中缺乏这两个,因此需要新的,更强大的技术和方法。照明猜想涉及非常基本的概念:凸组的覆盖物和交叉点。该项目将利用几何功能分析的最新发展,以开放有关改善最佳渐近界限的观点。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估的评估来支持的。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic analysis of algorithms for cost constrained minimum weighted combinatorial objects
  • DOI:
    10.1016/j.orl.2021.04.003
  • 发表时间:
    2021-04-28
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Frieze, Alan;Tkocz, Tomasz
  • 通讯作者:
    Tkocz, Tomasz
Typical Values of Extremal-Weight Combinatorial Structures with Independent Symmetric Weights
具有独立对称权重的极值组合结构的典型值
On the cover time of the emerging giant
论新兴巨头的封面时间
Shortest paths with a cost constraint: A probabilistic analysis
具有成本约束的最短路径:概率分析
  • DOI:
    10.1016/j.dam.2021.06.001
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Frieze, Alan;Tkocz, Tomasz
  • 通讯作者:
    Tkocz, Tomasz
Sharp Khinchin-type inequalities for symmetric discrete uniform random variables
对称离散均匀随机变量的 Sharp Khinchin 型不等式
  • DOI:
    10.1007/s11856-021-2244-8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Havrilla, Alex;Tkocz, Tomasz
  • 通讯作者:
    Tkocz, Tomasz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomasz Tkocz其他文献

Tomasz Tkocz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomasz Tkocz', 18)}}的其他基金

Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
  • 批准号:
    2246484
  • 财政年份:
    2023
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Standard Grant

相似国自然基金

基于图模型几何重构与非精确概率的多部件机械系统可靠性建模分析
  • 批准号:
    72271025
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
几何和概率观点的部分双曲动力学
  • 批准号:
    12161141002
  • 批准年份:
    2021
  • 资助金额:
    200 万元
  • 项目类别:
基于几何与概率的机器学习算法验证框架
  • 批准号:
    61872371
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
显式几何描述下考虑非概率不确定性的连续体结构拓扑优化研究
  • 批准号:
    11732004
  • 批准年份:
    2017
  • 资助金额:
    330.0 万元
  • 项目类别:
    重点项目
基于精确几何缺陷描述的壳体概率屈曲研究
  • 批准号:
    11602106
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
  • 批准号:
    2246484
  • 财政年份:
    2023
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Standard Grant
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    RGPIN-2022-02961
  • 财政年份:
    2022
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    DGECR-2022-00431
  • 财政年份:
    2022
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Discovery Launch Supplement
New development of geometric function theory by probabilistic methods
概率方法几何函数论的新发展
  • 批准号:
    17K18741
  • 财政年份:
    2017
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
  • 批准号:
    1111319
  • 财政年份:
    2010
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了