Analytic, Geometric, and Probabilistic Aspects of High-Dimensional Phenomena

高维现象的分析、几何和概率方面

基本信息

  • 批准号:
    1955175
  • 负责人:
  • 金额:
    $ 20.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The complexity of mathematical objects arising in geometry and probability increases as the dimension of the object increases. This is a result of a growing number of possible configurations as well as a lack of intuition, which is primarily built on low-dimensional examples. Sometimes, due to certain underlying fundamental properties such as symmetry or independence of these objects, we witness an order and universality present in high dimensions. This project aims to deepen our mathematical understanding of such phenomena in several contexts, such as volumetric aspects of high-dimensional random polytopes (geometric objects with "flat" sides), or the sums of many random quantities in which each quantity comes with a deterministic weight. In addition to their fundamental interest, such problems are motivated by, and often find applications in, related areas of statistics, computer science, big data and machine learning. A vital part of this project is the student training and educational activities that will result. More specifically, this project is devoted to three topics related to analytic, geometric and probabilistic aspects of high-dimensional phenomena: estimates for moments and tails of sums of random variables, thresholds for the volume of random polytopes, and efficient coverings of convex sets with its homothetic copies (the Hadwiger covering/illumination problem). Our work on probabilistic comparison inequalities, involving analytic and probabilistic techniques such as chaining, will help us understand the concentration of measure phenomena for random sums, with applications to the geometry of Banach spaces. Volume threshold phenomena of random polytopes in high dimensions have been established and satisfactorily understood only in the presence of a product structure or rotational symmetry. The lack of these two in our problems creates a need for new, more robust techniques and approaches. The illumination conjecture touches upon very basic concepts: coverings and intersections of convex sets. This project will exploit recent developments in geometric functional analysis to open up perspectives on improving best asymptotic bounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何和概率中出现的数学对象的复杂性随着对象维度的增加而增加。这是由于可能的配置数量不断增加以及缺乏直觉的结果,直觉主要建立在低维示例的基础上。有时,由于某些潜在的基本属性,例如这些物体的对称性或独立性,我们见证了高维度中存在的秩序和普遍性。该项目旨在加深我们对多种背景下此类现象的数学理解,例如高维随机多胞体(具有“平坦”边的几何对象)的体积方面,或许多随机量的总和,其中每个量都具有确定性重量。除了它们的基本兴趣之外,这些问题还受到统计、计算机科学、大数据和机器学习相关领域的推动,并且经常在这些领域找到应用。该项目的一个重要部分是由此产生的学生培训和教育活动。更具体地说,该项目致力于与高维现象的分析、几何和概率方面相关的三个主题:随机变量之和的矩和尾部的估计、随机多胞体体积的阈值以及凸集的有效覆盖它的拟似副本(Hadwiger 覆盖/照明问题)。我们在概率比较不等式方面的工作,涉及分析和概率技术(例如链接),将帮助我们理解随机和的测度现象的集中性,并将其应用于巴纳赫空间的几何。高维随机多胞体的体积阈值现象仅在存在乘积结构或旋转对称性的情况下才被建立并令人满意地理解。我们的问题中缺少这两个因素,因此需要新的、更强大的技术和方法。光照猜想涉及非常基本的概念:凸集的覆盖和交集。该项目将利用几何泛函分析的最新进展,开辟改进最佳渐近界的视角。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic analysis of algorithms for cost constrained minimum weighted combinatorial objects
  • DOI:
    10.1016/j.orl.2021.04.003
  • 发表时间:
    2021-04-28
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Frieze, Alan;Tkocz, Tomasz
  • 通讯作者:
    Tkocz, Tomasz
Typical Values of Extremal-Weight Combinatorial Structures with Independent Symmetric Weights
具有独立对称权重的极值组合结构的典型值
Shortest paths with a cost constraint: A probabilistic analysis
具有成本约束的最短路径:概率分析
  • DOI:
    10.1016/j.dam.2021.06.001
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Frieze, Alan;Tkocz, Tomasz
  • 通讯作者:
    Tkocz, Tomasz
On the cover time of the emerging giant
论新兴巨头的封面时间
Sharp Khinchin-type inequalities for symmetric discrete uniform random variables
对称离散均匀随机变量的 Sharp Khinchin 型不等式
  • DOI:
    10.1007/s11856-021-2244-8
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Havrilla, Alex;Tkocz, Tomasz
  • 通讯作者:
    Tkocz, Tomasz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomasz Tkocz其他文献

Tomasz Tkocz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomasz Tkocz', 18)}}的其他基金

Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
  • 批准号:
    2246484
  • 财政年份:
    2023
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Standard Grant

相似国自然基金

面向大跨桥梁施工监控的激光-图像融合几何形态感知方法研究
  • 批准号:
    52308306
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于透视几何约束一致性的跨域刚体单目位姿估计
  • 批准号:
    12302252
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复流形上蒙日-安培型方程理论以及几何问题的研究
  • 批准号:
    12371078
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
轨形方法在拓扑、几何和动力系统中的应用
  • 批准号:
    12371067
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Analytic and Probabilistic Methods in Geometric Functional Analysis
几何泛函分析中的解析和概率方法
  • 批准号:
    2246484
  • 财政年份:
    2023
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Standard Grant
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    RGPIN-2022-02961
  • 财政年份:
    2022
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    DGECR-2022-00431
  • 财政年份:
    2022
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Discovery Launch Supplement
New development of geometric function theory by probabilistic methods
概率方法几何函数论的新发展
  • 批准号:
    17K18741
  • 财政年份:
    2017
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
  • 批准号:
    1111319
  • 财政年份:
    2010
  • 资助金额:
    $ 20.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了