Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
基本信息
- 批准号:1954749
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep neural network (DNN) is an important Artificial Intelligence (AI) technique and it has recently gained widespread applications in numerous fields such as image recognition, machine translation, autonomous vehicles and healthcare diagnosis. Conventional DNNs are implemented using cloud computing, where a large amount of computing resource is available in a centrally-pooled manner. In order to achieve stronger data privacy, less response time and relaxed data transmission burden, deploying DNN functionality in a distributed manner at the edges of the network has become a very attractive proposition. However, DNN-learning on mobile devices that are at the edge of the network is very challenging due to conflicting requirements of large time and energy consumption, and limited on-device resources. In order to address this challenge, this project leverages low-rank tensors as a powerful mathematical tool for representing and compressing tensor-format data, to form a new family of ultra-low cost deep neural networks. This brings an order-of-magnitude reduction in time and energy consumption for deep neural network learning. Investigations in many areas of BigData research will benefit as well. This project involves graduate and undergraduate students, especially from underrepresented groups, through summer research experiences, and senior design projects to broaden the participation of computing. The outcomes of this project will be disseminated to the community in the format of technical publications, talks and tutorials in both academic institutions and industry.In order to remove the barriers of realizing real-time energy-efficient DNN-learning on the resource and energy-constrained embedded devices, this project considers innovations at three levels: 1) at theory level, it develops a novel redundancy-free matrix-vector multiplication scheme to reduce computational cost, including a new online update scheme for low-rank tensors to enable fast compressed data update; 2) at algorithm level, it develops low-rank tensor-based forward and backward propagation schemes to support low-cost accelerated inference and training, including catastrophic forgetting-resilient training scheme and training-aware compression scheme to improve the learning robustness and memory efficiency; and 3) at hardware design level, it proposes efficient hardware architecture that fully utilize the benefits provided by low-rank tensors to achieve improved hardware performance for on-device DNN inference and learning. Finally, the efficacy of the proposed research will be validated and evaluated, via software implementations on different DNN models in different target applications. A field-programmable gate array (FPGA)-based hardware prototype will also be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)是一种重要的人工智能(AI)技术,近年来在图像识别、机器翻译、自动驾驶汽车和医疗诊断等众多领域获得了广泛的应用。传统的 DNN 是使用云计算实现的,其中以集中池的方式提供大量计算资源。为了实现更强的数据隐私、更少的响应时间和减轻数据传输负担,在网络边缘以分布式方式部署 DNN 功能已成为一个非常有吸引力的主张。然而,由于大量时间和能源消耗以及有限的设备资源的冲突要求,位于网络边缘的移动设备上的 DNN 学习非常具有挑战性。为了应对这一挑战,该项目利用低秩张量作为表示和压缩张量格式数据的强大数学工具,形成一个新的超低成本深度神经网络系列。这使得深度神经网络学习的时间和能源消耗减少了一个数量级。大数据研究许多领域的调查也将受益。该项目涉及研究生和本科生,特别是来自代表性不足群体的学生,通过暑期研究经验和高级设计项目来扩大计算的参与范围。该项目的成果将以技术出版物、讲座和教程的形式在学术机构和工业界传播给社区。以消除实现资源和能源实时节能DNN学习的障碍-受限嵌入式设备,该项目考虑了三个层面的创新:1)在理论层面,开发了一种新颖的无冗余矩阵向量乘法方案以降低计算成本,包括一种新的低秩张量在线更新方案以实现快速压缩数据 更新; 2)在算法层面,开发基于低秩张量的前向和后向传播方案以支持低成本加速推理和训练,包括灾难性遗忘恢复训练方案和训练感知压缩方案以提高学习鲁棒性和记忆效率; 3)在硬件设计层面,提出了高效的硬件架构,充分利用低秩张量提供的优势,以提高设备上DNN推理和学习的硬件性能。最后,将通过不同目标应用中不同 DNN 模型的软件实现来验证和评估所提出研究的有效性。还将开发基于现场可编程门阵列 (FPGA) 的硬件原型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seizure Prediction using Convolutional Neural Networks and Sequence Transformer Networks
- DOI:10.1109/embc46164.2021.9629732
- 发表时间:2021-01-01
- 期刊:
- 影响因子:0
- 作者:Chen, Ryan;Parhi, Keshab K.
- 通讯作者:Parhi, Keshab K.
Optimization of Quantum Circuits for Stabilizer Codes
- DOI:10.1109/tcsi.2024.3384436
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Arijit Mondal;K. Parhi
- 通讯作者:Arijit Mondal;K. Parhi
Decoding Human Cognitive Control Using Functional Connectivity of Local Field Potentials
- DOI:10.1109/embc46164.2021.9630706
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:S. Avvaru;N. Provenza;A. Widge;K. Parhi
- 通讯作者:S. Avvaru;N. Provenza;A. Widge;K. Parhi
Betweenness Centrality in Resting-State Functional Networks Distinguishes Parkinson's Disease
- DOI:10.1109/embc48229.2022.9870988
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:S. Avvaru;K. Parhi
- 通讯作者:S. Avvaru;K. Parhi
Quantum Circuits for Stabilizer Error Correcting Codes: A Tutorial
用于稳定器纠错码的量子电路:教程
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:6.9
- 作者:Mondal, Arijit;Parhi, Keshab K.
- 通讯作者:Parhi, Keshab K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshab Parhi其他文献
Keshab Parhi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keshab Parhi', 18)}}的其他基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243053 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
- 批准号:
1814759 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Low-Energy Architectures for Machine Learning
EAGER:机器学习的低能耗架构
- 批准号:
1749494 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small: Advanced Digital Signal Processing with DNA
SHF:小型:采用 DNA 的先进数字信号处理
- 批准号:
1423407 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SaTC: STARSS: Design of Secure and Anti-Counterfeit Integrated Circuits
SaTC:STARSS:安全防伪集成电路设计
- 批准号:
1441639 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small: Digital Signal Processing using Stochastic Computing
SHF:小型:使用随机计算的数字信号处理
- 批准号:
1319107 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SHF: Small :Digital Signal Processing with Biomolecular Reactions
SHF:小型:生物分子反应的数字信号处理
- 批准号:
1117168 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Synthesizing Signal Processing Functions with Biochemical Reactions
EAGER:利用生化反应综合信号处理功能
- 批准号:
0946601 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CPA-DA: Noise-Aware VLSI Signal Processing: A New Paradigm for Signal Processing Integrated Circuit Design in Nanoscale Era
合作研究:CPA-DA:噪声感知VLSI信号处理:纳米时代信号处理集成电路设计的新范式
- 批准号:
0811456 - 财政年份:2008
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Design of High-Speed DSPTransceivers for Ethernet over Copper
铜缆以太网高速 DSP 收发器的设计
- 批准号:
0429979 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
强震动环境下10-100Hz超高频GNSS误差精细建模及监测应用研究
- 批准号:42274025
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant