EAGER: Low-Energy Architectures for Machine Learning
EAGER:机器学习的低能耗架构
基本信息
- 批准号:1749494
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning systems and classifiers will be part of future smart devices. Industrial internet-of-things (IIOT) and cyber-physical systems (CPS) will be equipped with real-time feature extraction and classification to provide feedback and/or warning signals in some cases. Smart medical devices can analyze signals and trigger therapy to improve human health. Security systems can analyze activity data and thwart planned attacks. Reducing energy consumption in these smart devices is critical for increasing battery life in portable applications. This proposal addresses techniques to reduce energy consumption in feature extraction and classification. The broader impacts will be in demonstrating a new approach for feature extraction and classification with significantly less energy consumption without degrading sensitivity and specificity, along with training and educating graduate and undergraduate students in related disciplines through laboratory and computational experiences.The proposed framework computes features and classifies the test data using a simple level-1 classifier that makes use of low precision. If the classification is successful, then the process terminates. Otherwise the level-2 classifier is invoked. The level-2 classifier makes use of higher precision for the feature extraction and classification; however, it reuses the low-precision results of the level-1 classifier. The process is repeated in an iterative manner until the test sample is classified with a high probability. The proposed approach differs from existing approaches in the sense that the classifier at a certain level is trained using only the training samples that do not contain the samples that were correctly classified in prior levels. The precision at the different levels of feature extraction and classification are the same for both training and test phases. This is expected to lead to higher classification accuracy. The features and classifiers are computed using approximate computing in an incremental manner. Other innovative aspects include: selection of classes of features that require less energy (e.g., time-domain vs. frequency-domain), ranking of these features using techniques such as minimally-redundant maximally-relevant (mRMR) and use of classifiers such as classification and regression tree (CART) or AdaBoost. Approximate computing of features and classifiers in an incremental manner will be investigated to reduce overall energy consumption while maintaining high sensitivity and specificity. Training of the P-Boost classifier and testing the classifier will be based on same precision; thus there is no disconnect between the precision of the classifiers used for training and testing. The proposed "holistic" approach is likely to result in significant savings in energy consumption compared to state-of-the-art machine learning systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习系统和分类器将成为未来智能设备的一部分。工业互联网(IIOT)和网络物理系统(CPS)将配备实时功能提取和分类,以在某些情况下提供反馈和/或警告信号。智能医疗设备可以分析信号并触发疗法以改善人类健康。安全系统可以分析活动数据并阻止计划的攻击。减少这些智能设备的能耗对于提高便携式应用中的电池寿命至关重要。该建议涉及减少特征提取和分类中能源消耗的技术。更广泛的影响将在展示一种新方法提取和分类的方法,并在没有降低敏感性和特异性的情况下明显降低能源消耗,以及通过实验室和计算经验进行培训和教育研究生和本科生,并通过实验室和计算经验进行相关学科的学生。拟议的框架计算功能并使用简单的级别进行测试数据,并使用简单的1个级别的级别进行测试数据,从而可以使用低确定的精确性。如果分类成功,则该过程将终止。否则将调用2级分类器。 2级分类器利用更高的精度进行特征提取和分类;但是,它可以重复使用Level-1分类器的低精度结果。以迭代方式重复该过程,直到测试样本以高概率分类为止。所提出的方法与现有方法不同,因为在某个级别上的分类器仅使用不包含未正确分类为先前级别的样本的训练样本进行培训。对于训练和测试阶段,不同特征提取和分类水平的精度相同。预计这将导致更高的分类准确性。功能和分类器以增量方式使用近似计算计算。其他创新方面包括:选择更少能量的特征类别(例如,时间域与频域),使用诸如最小冗余最大相关(MRMR)等技术的这些特征的排名以及分类和回归树(CART)或ADABOOST等分类器的使用。将研究特征和分类器的近似计算,以减少总体能耗,同时保持高灵敏度和特异性。培训P-boost分类器和测试分类器将基于相同的精度;因此,用于培训和测试的分类器的精度之间没有断开连接。与最先进的机器学习系统相比,拟议的“整体”方法可能会大量节省能源消耗。该奖项反映了NSF的法定任务,并且使用基金会的智力优点和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-Energy Architectures of Linear Classifiers for IoT Applications using Incremental Precision and Multi-Level Classification
使用增量精度和多级分类的物联网应用线性分类器的低能耗架构
- DOI:10.1145/3194554.3194603
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Koteshwara, Sandhya;Parhi, Keshab K.
- 通讯作者:Parhi, Keshab K.
Incremental-Precision based Feature Computation and Multi-Level Classification for Low-Energy Internet-of-Things
基于增量精度的低能耗物联网特征计算和多级分类
- DOI:10.1109/jetcas.2018.2836319
- 发表时间:2018
- 期刊:
- 影响因子:4.6
- 作者:Koteshwara, Sandhya;Parhi, Keshab K.
- 通讯作者:Parhi, Keshab K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshab Parhi其他文献
Keshab Parhi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keshab Parhi', 18)}}的其他基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2243053 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1954749 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: LDPD-Net: A Framework for Accelerated Architectures for Low-Density Permuted-Diagonal Deep Neural Networks
SHF:小型:协作研究:LDPD-Net:低密度置换对角深度神经网络加速架构框架
- 批准号:
1814759 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
SHF: Small: Advanced Digital Signal Processing with DNA
SHF:小型:采用 DNA 的先进数字信号处理
- 批准号:
1423407 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
SaTC: STARSS: Design of Secure and Anti-Counterfeit Integrated Circuits
SaTC:STARSS:安全防伪集成电路设计
- 批准号:
1441639 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
SHF: Small: Digital Signal Processing using Stochastic Computing
SHF:小型:使用随机计算的数字信号处理
- 批准号:
1319107 - 财政年份:2013
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
SHF: Small :Digital Signal Processing with Biomolecular Reactions
SHF:小型:生物分子反应的数字信号处理
- 批准号:
1117168 - 财政年份:2011
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER: Synthesizing Signal Processing Functions with Biochemical Reactions
EAGER:利用生化反应综合信号处理功能
- 批准号:
0946601 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: CPA-DA: Noise-Aware VLSI Signal Processing: A New Paradigm for Signal Processing Integrated Circuit Design in Nanoscale Era
合作研究:CPA-DA:噪声感知VLSI信号处理:纳米时代信号处理集成电路设计的新范式
- 批准号:
0811456 - 财政年份:2008
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Design of High-Speed DSPTransceivers for Ethernet over Copper
铜缆以太网高速 DSP 收发器的设计
- 批准号:
0429979 - 财政年份:2004
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似国自然基金
面向宽带低轨卫星通信系统的OTFS高可靠传输技术
- 批准号:62371369
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
低资源环境下的篇章级事件抽取研究
- 批准号:62376177
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
融合多源低轨卫星数据解算日时变重力场的理论与方法
- 批准号:42374100
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
活化FFAR4构建TRPM8通道低活性脱敏态对慢阻肺气道黏液冷刺激性高分泌的遏制效应研究
- 批准号:82300054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维数据中具有低秩结构的标签噪声问题研究
- 批准号:12301380
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceiversfor IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:
2029407 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER: SARE: Collaborative: Low Energy Secure Wireless Transceivers for IoT Trusted Communications
EAGER:SARE:协作:用于物联网可信通信的低能耗安全无线收发器
- 批准号:
2029461 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
RoL: EAGER: DESYN-C3: Using synthetic energy-harvesting materials at the cell surface to reduce low potential ferredoxins within the cytosol for metabolic applications
RoL:EAGER:DESYN-C3:在细胞表面使用合成能量收集材料来减少细胞质内的低电位铁氧还蛋白,用于代谢应用
- 批准号:
1843556 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER: Opportunistic Soundings to Advance the Understanding of High-Shear Low-CAPE (Convective Available Potential Energy) Convective Environments
EAGER:机会性探测,以增进对高剪切低 CAPE(对流可用势能)对流环境的理解
- 批准号:
1530258 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER: Multifunctional Cellular Metacomposite: Low Frequency Noise Absorber and Energy Harvesting
EAGER:多功能细胞超复合材料:低频噪声吸收器和能量收集
- 批准号:
1037569 - 财政年份:2010
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant