Combinatorial Set Theory, Forcing, and Large Cardinals

组合集合论、强迫和大基数

基本信息

  • 批准号:
    1954117
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Many natural questions in mathematics cannot be answered in terms of the standard axioms of mathematics alone. The most famous example is the Continuum Hypothesis, which states that any infinite subset of the real numbers is either countable or in a one-to-one correspondence with the whole set of real numbers. The technique known as forcing can be used to show that the Continuum Hypothesis is logically independent of the standard set of axioms for mathematics, known as Zermelo-Fraenkel set theory with the axiom of choice (ZFC). A major theme in modern set theory is development of relative consistency results and ZFC-strengthenings. ZFC-strengthenings are given by large cardinal hypotheses, which assert the existence of certain highly compact mathematical objects, called large cardinals, with strong reflection properties, that is, if a property holds at the large cardinal, it must hold at many cardinals below it. Assuming large cardinals exist, the method of forcing can be used to create various mathematical models. This project analyzes these constructions, motivated by two complementary notions: what is mathematically necessary? what is mathematically sufficient? The project provides research training opportunities for graduate students.The main objectives of the project are analyzing what is possible from large cardinals and forcing, versus what constraints are imposed by ZFC. Forcing in the presence of large cardinals is the main tool to create models of ZFC and prove consistency results. In contrast to having large cardinals, Gödel's constructible universe L is the minimal class model of set theory. Two central questions are how much the universe resembles L, and how much compactness can be achieved by forcing. Compactness is the phenomenon where if a certain property holds for every smaller substructure of a given object, then it holds for the object itself. It follows from large cardinals, and often fails in L. Compactness is captured by some key combinatorial principles such as the tree property and its strengthenings. On the other hand, square properties are the canonical instance of incompactness and serve as a yardstick how close a model is to L. The project will focus on the interplay between these principles and forcing extensions constructed from large cardinals. The PI will also investigate how they interact with cardinal arithmetic and especially with singular combinatorics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
仅凭数学的标准公理就不能回答数学中许多自然问题。最著名的例子是连续假设,该假设指出,实际数字的任何无限子集都是可计数的,要么与整个实数集合一对一。所谓强迫的技术可用于表明连续假设在逻辑上独立于数学的标准公理集,称为Zermelo-fraenkel集合理论,具有选择的公理(ZFC)。现代布景理论中的一个主要主题是相对一致性结果和ZFC增长的发展。 ZFC强度是由大型基本假设给出的,该假设断言某些高度紧凑的数学对象,称为大型红衣主教,具有强反射特性,也就是说,如果某个特性在大型的红衣主教处保持,则必须在其下方的许多红衣主教处保持。假设存在大型红衣主教,则可以使用强迫方法来创建各种数学模型。该项目分析了这些结构,这是由两个完整概念激励的:在数学上有什么需要?什么在数学上足够?该项目为研究生提供了研究培训机会。该项目的主要目标是分析了大型红衣主教和强迫的可能性,而ZFC施加了什么约束。在大型红衣主教的存在下强迫是创建ZFC模型并证明一致性结果的主要工具。与拥有大型的红衣主教相反,戈德尔的可构造宇宙是集合理论的最小类模型。两个核心问题是宇宙类似于L,以及通过强迫可以实现多少紧凑性。紧凑性是一种现象,如果某个特性适用于给定对象的每个较小的子结构,则它为对象本身保留。从大型红衣主教中开始,通常会失败。另一方面,正方形的性质是不兼容性的规范实例,并用作模型与L的尺寸。 PI还将调查他们如何与红衣主教算术相互作用,尤其是与单数组合学的相互作用。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为通过评估被认为是宝贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Dima Sinapova其他文献

2021 NORTH AMERICAN ANNUAL MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC
2021年北美符号逻辑协会年会
  • DOI:
  • 发表时间:
    2021
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    G. Bezhanishvili;C. Franks;Selwyn Ng;Dima Sinapova;M. Thomas;Paddy Blanchette;Peter A. Cholak;J. Knight
    G. Bezhanishvili;C. Franks;Selwyn Ng;Dima Sinapova;M. Thomas;Paddy Blanchette;Peter A. Cholak;J. Knight
  • 通讯作者:
    J. Knight
    J. Knight
The super tree property at the successor of a singular
超级树属性在单一的后继者
The tree property at the first and double successors of a singular
单数的第一个和双后继者的树属性
Sigma-Prikry forcing II: Iteration Scheme
Sigma-Prikry 强迫 II:迭代方案
  • DOI:
    10.1142/s0219061321500197
    10.1142/s0219061321500197
  • 发表时间:
    2019
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alejandro Poveda;A. Rinot;Dima Sinapova
    Alejandro Poveda;A. Rinot;Dima Sinapova
  • 通讯作者:
    Dima Sinapova
    Dima Sinapova
Ordinal definable subsets of singular cardinals
奇异基数的序数可定义子集
共 11 条
  • 1
  • 2
  • 3
前往

Dima Sinapova的其他基金

Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    2308248
    2308248
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Infinitary Combinatorics
无穷组合学
  • 批准号:
    2246781
    2246781
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Forcing and Large Cardinals
职业生涯:强迫和大红衣主教
  • 批准号:
    1454945
    1454945
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Singular Combinatorics
奇异组合学
  • 批准号:
    1362485
    1362485
  • 财政年份:
    2014
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

基于激光-视觉协同扫描的复合材料自动铺放全过程检测基础理论与方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
基于扩散点火理论的甲烷/氢气高压泄放自燃特性及影响机制的基础研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
煤矿综放采空区二域流场理论与仿真研究
  • 批准号:
    52074148
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
三维有限水体的固-液界面形状、水体水位和气枪沉放位置对陆地水体气枪震源激发的气枪子波信号的传播影响研究
  • 批准号:
    41904046
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
快速充放锂电池的离子扩散机理及其固体电解质界面的理论设计
  • 批准号:
    51602092
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
    Standard Grant
    Standard Grant
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    2308248
    2308248
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Combinatorial set theory and measurable combinatorics
组合集合论和可测组合学
  • 批准号:
    RGPIN-2021-03549
    RGPIN-2021-03549
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
Combinatorial set theory and measurable combinatorics
组合集合论和可测组合学
  • 批准号:
    RGPIN-2021-03549
    RGPIN-2021-03549
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual