Collaborative Research: Improved Ionospheric Source Models for Imaging Upper Mantle-Transition Zone Resistivity
合作研究:用于上地幔过渡带电阻率成像的改进电离层源模型
基本信息
- 批准号:1446856
- 负责人:
- 金额:$ 8.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Daily variations of Earth's magnetic field result primarily from electric currents flowing above us in the ionosphere, at heights of about 100-150 km, with a secondary component due to currents induced below us in the deep interior of the electrically conducting Earth. This is a collaborative project, bringing solid Earth and ionospheric scientists together in an effort to better understand and separate the two current sources. A primary motivation for this effort is to improve understanding of the smaller and subtler internal component, and thence improve the ability to image electrical conductivity variations deep (200-700 km) in the Earth. Conductivity of rocks at these depths is highly sensitive to even small amounts of water, so these images will ultimately allow estimates the amount and distribution of water in the deep Earth, and improve understanding of deep Earth water cycles. These results will have important implications to a number of scientific fields, including the dynamics and evolution of the Earth and evolution of the oceans. The crucial step in this study is to significantly improve models of the external ionospheric component of the magnetic field. Such magnetic field models have many potentially important applications to basic and applied scientific research in geomagnetism and space physics. Ultimately they will be useful in applications of direct societal relevance where the knowledge of an accurate magnetic field is required, including navigation, orientation of solar arrays, and geophysical exploration for natural resources.In conjunction with recent laboratory results on electrical conductivity of mantle minerals, improved imaging of electrical conductivity in Earth's mantle will provide valuable new information about water in the mantle, with potentially profound implications for mantle rheology, and for the dynamics and geochemical evolution of the Earth. Information about deep Earth resistivity comes almost exclusively from observations of long-period geomagnetic variations observed on Earth's surface--the sum of external fields due to ionospheric and magnetospheric current systems, and internal fields due to currents induced in the conducting Earth. Frequencies of 0.5-10 cycles per day (cpd) are most relevant to imaging through the aesthenosphere and into the transition zone, and these variations mostly have their origin in the ionospheric dynamo region at 100-150 km height. These ionospheric currents depend on the spatial and temporal varying thermospheric neutral wind and the ionospheric conductivity distribution. To reliably interpret the relatively subtle induced signals indicative of Earth conductivity variations, these spatially complex ionospheric magnetic field signals must be properly accounted. This project attacks this challenging problem through collaboration between specialists in EM induction imaging and experts in ionospheric physics and modeling. Spatial structure of external source and internal conductivity variations will be estimated simultaneously, using a large collection of ground-based geomagnetic array data from both historical and modern eras. There are two novel components to the proposed approach. First, a robust Principal Components Analysis (PCA) scheme is used for initial data reduction. This PCA scheme massively reduces the number of data (and thus the number of independent source parameters required), and allows data from different eras to be merged, thus significantly increasing data coverage. Second, the source modeling is tightly constrained through the use of a mature physics based numerical model for ionospheric currents, the Thermosphere-Ionosphere-Mesosphere-Electrodynamics general Circulation Model (TIME-GCM). In addition to the team's immediate application to improved EM induction imaging, these efforts may provide significant benefits to the ionospheric and broader geomagnetic communities. For example, the project includes detailed comparison between TIME-GCM outputs and a large collection of ground geomagnetic data, providing insight into strengths and weaknesses of this numerical model. More broadly, approaches developed for incorporating ground-based data into time dependent models of ionospheric magnetic fields will benefit a range of basic and applied studies of Earth's magnetic field.
地球磁场的日常变化主要是由我们上方大约 100-150 公里高度的电离层中流动的电流引起的,其次是由于我们下方导电地球深处的感应电流引起的。这是一个合作项目,将固体地球和电离层科学家聚集在一起,以更好地理解和分离这两个电流源。这项工作的主要动机是提高对更小、更微妙的内部组件的理解,从而提高对地球深处(200-700 公里)电导率变化进行成像的能力。 这些深度的岩石电导率对即使是少量的水也高度敏感,因此这些图像最终将有助于估计地球深处水的数量和分布,并增进对地球深层水循环的了解。 这些结果将对许多科学领域产生重要影响,包括地球的动力学和演化以及海洋的演化。 这项研究的关键一步是显着改进磁场外部电离层分量的模型。 这种磁场模型对于地磁和空间物理学的基础和应用科学研究有许多潜在的重要应用。最终,它们将在需要精确磁场知识的直接社会相关应用中发挥作用,包括导航、太阳能电池阵列定向和自然资源地球物理勘探。结合最近关于地幔矿物电导率的实验室结果,改进的地幔电导率成像将为地幔中的水提供有价值的新信息,对地幔流变学以及地球的动力学和地球化学演化具有潜在的深远影响。有关地球深层电阻率的信息几乎完全来自对地球表面长期地磁变化的观测——电离层和磁层电流系统引起的外部场以及导电地球中感应电流引起的内部场的总和。每天 0.5-10 个周期 (cpd) 的频率与穿过软流层并进入过渡区的成像最相关,这些变化主要起源于 100-150 公里高度的电离层发电机区域。这些电离层电流取决于时空变化的热层中性风和电离层电导率分布。为了可靠地解释指示地球电导率变化的相对微妙的感应信号,必须正确考虑这些空间复杂的电离层磁场信号。该项目通过电磁感应成像专家与电离层物理和建模专家之间的合作来解决这一具有挑战性的问题。将使用历史和现代的大量地面地磁阵列数据同时估计外部源的空间结构和内部电导率变化。所提出的方法有两个新颖的组成部分。首先,使用稳健的主成分分析(PCA)方案来减少初始数据。这种PCA方案大量减少了数据数量(从而减少了所需的独立源参数的数量),并允许合并不同时代的数据,从而显着增加了数据覆盖范围。其次,通过使用成熟的基于物理的电离层电流数值模型,即热层-电离层-中间层-电动环流模型(TIME-GCM),源建模受到严格约束。 除了该团队立即应用于改进的电磁感应成像之外,这些努力还可能为电离层和更广泛的地磁社区带来显着的好处。 例如,该项目包括 TIME-GCM 输出和大量地面地磁数据之间的详细比较,从而深入了解该数值模型的优点和缺点。 更广泛地说,将地面数据纳入电离层磁场随时间模型而开发的方法将有利于地球磁场的一系列基础和应用研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Astrid Maute其他文献
Responses of the Mean Thermosphere Circulation, O/N2 Ratio and Ne to Solar and Magnetospheric Forcing From Above and Tidal Forcing From Below
平均热层环流、O/N2 比和 Ne 对来自上方的太阳和磁层强迫以及来自下方的潮汐强迫的响应
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Forbes;Xiaolin Zhang;Astrid Maute;C. Cullens - 通讯作者:
C. Cullens
An application of principal component analysis to the interpretation of ionospheric current systems
主成分分析在电离层电流系统解释中的应用
- DOI:
10.1002/2017ja024051 - 发表时间:
2017-05-01 - 期刊:
- 影响因子:0
- 作者:
P. Alken;Astrid Maute;A. Richmond;H. Vanhamaki;G. Egbert - 通讯作者:
G. Egbert
Quasi 6‐Day Planetary Wave Oscillations in Equatorial Plasma Irregularities
赤道等离子体不规则性中的准六日行星波振荡
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Pedatella;Ercha Aa;Astrid Maute - 通讯作者:
Astrid Maute
Characterizing Evening Solar Terminator Waves in ICON/MIGHTI Neutral Winds
描述 ICON/MIGHTI 中性风中傍晚太阳终结波的特征
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
L. Gasque;B. Harding;T. Immel;Yen‐Jung J. Wu;C. Triplett;S. Vadas;Erich Becker;Astrid Maute - 通讯作者:
Astrid Maute
Quiet-time Day-to-day Variability of Equatorial Vertical E×B Drift from Atmosphere Perturbations at Dawn
黎明时大气扰动引起的赤道垂直 E_B 漂移的安静时间日常变化
- DOI:
10.1029/2020ja027824 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xu Zhou;Han‐Li Liu;Xian Lu;Ruilong Zhang;Astrid Maute;Haonan Wu;Xinan Yue;Weixing Wan - 通讯作者:
Weixing Wan
Astrid Maute的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Astrid Maute', 18)}}的其他基金
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
- 批准号:
2332817 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
- 批准号:
2113412 - 财政年份:2021
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR--Assimilative Analysis of Low- and Mid-latitude Ionospheric Electrodynamics
合作研究:CEDAR--低纬度和中纬度电离层电动力学同化分析
- 批准号:
1651411 - 财政年份:2017
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
相似国自然基金
通过构象和位阻调控改进AIE光敏剂光敏性和代谢性的研究
- 批准号:22305271
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
矿井通风供需匹配改进预估的智能模糊PID调控理论研究
- 批准号:52374242
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
智能互联产品动态质量过程控制与迭代改进方法研究
- 批准号:72371183
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
WRF-CHIMERE双向耦合模式中沙尘矿物组分的云凝结核和冰核活化模块改进与开发研究
- 批准号:42305171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
区域海-浪-气耦合模式改进及台风风暴潮数值模拟应用研究
- 批准号:42306036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314273 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314270 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314271 - 财政年份:2024
- 资助金额:
$ 8.49万 - 项目类别:
Continuing Grant