GOALI: High Magnetic Anisotropy Materials for Ultrahigh Density Heat-assisted Magnetic Recording Media.

目标:用于超高密度热辅助磁记录介质的高磁各向异性材料。

基本信息

  • 批准号:
    1933527
  • 负责人:
  • 金额:
    $ 19.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Over the last six decades, the areal density of magnetic recording has increased by eight orders of magnitude. These rapid advancements have fundamentally changed information technology and the way of life. The information is stored in tiny magnets, like compasses with nanometer sizes. As each bit of information is stored over an ever-smaller volume, it is essential to use materials that are still stable at extremely small dimensions against thermal effects. This material property is known as the magnetic anisotropy, which anchors magnetic moments in place, enabling their practical use. This project aims at realizing materials with high magnetic anisotropy using convenient and benign synthesis conditions, combined with control over the material properties, towards applications in next generation ultrahigh density magnetic recording media and rare-earth-free and precious-metal-free permanent magnets. This GOALI partnership between U.C. Davis and Seagate offers an exciting opportunity to rapidly transfer research results into technology. This would potentially speed up the adaptation of the emerging heat-assisted magnetic recording technology. Advances in more powerful permanent magnets would impact numerous industry sectors, including hybrid and electric vehicles, magnetically levitated trains, wind turbines, power storage, magnetic refrigeration, etc. The partnership also provides opportunities to train junior researchers in industry research and development laboratories, in addition to excellent exposure to research experience in university and national laboratory and user facilities. The team plans to initiate and actively participate in a variety of efforts to broaden participation from underrepresented groups through internships, graduate course offering, exchange visits with Seagate, and other specific programs at the Magnetism Conference.High magnetic anisotropy materials have critical applications in next generation ultrahigh density heat-assisted magnetic recording media as well as high energy density permanent magnets. Alloys of ordered FePt in the L10 phase is an ideal candidate for recording media applications. However, a critical challenge has been the high annealing temperature necessary to transform the as-deposited low anisotropy phase into the desirable high anisotropy one. This project will achieve high magnetic anisotropy L10 FePt-based thin films using atomic-scale multilayer sputtering and rapid thermal annealing. Magnetic properties of these materials will be tailored to achieve the desirable high anisotropy, large saturation magnetization, and low Curie temperature using ternary FePt-based alloys through proper tuning of the effective valence electron number. These approaches will be extended to realize L10 FeNi films that are alternative type of permanent magnets using earth abundant elements. A true understanding of the disorder-order phase transformation in these thin films will be gained, and quantitative evaluation of the phase fractions will be obtained. The partnership between U.C. Davis and Seagate will help to achieve L10 FePt and FeNi based alloys that can be readily synthesized, with controlled anisotropy at the atomic scale and minimized switching field distribution. Such materials have potentially transformative technological impacts, in speeding up the adaption for the emerging ultrahigh density heat-assisted magnetic recording technology and in the realization of high energy density permanent magnets that are rare-earth-free and precious-metal-free.
在过去的六十年里,磁记录的面密度增加了八个数量级。这些快速进步从根本上改变了信息技术和生活方式。这些信息存储在微型磁铁中,例如纳米尺寸的指南针。由于每一位信息存储在越来越小的体积中,因此必须使用在极小尺寸下仍能稳定地抵抗热效应的材料。这种材料特性被称为磁各向异性,它将磁矩固定在适当的位置,从而使其能够实际使用。该项目旨在利用方便和良性的合成条件,结合对材料性能的控制,实现具有高磁各向异性的材料,以应用于下一代超高密度磁记录介质以及无稀土和无贵金属的永磁体。 U.C. 之间的 GOALI 合作伙伴关系Davis 和 Seagate 提供了一个将研究成果快速转化为技术的令人兴奋的机会。这可能会加速新兴热辅助磁记录技术的应用。更强大的永磁体的进步将影响众多行业领域,包括混合动力和电动汽车、磁悬浮列车、风力涡轮机、电力存储、磁制冷等。该合作伙伴关系还提供了培训行业研发实验室的初级研究人员的机会,除了在大学和国家实验室和用户设施中获得良好的研究经验之外。该团队计划发起并积极参与各种努力,通过实习、研究生课程提供、与希捷的交流访问以及磁学会议上的其他具体项目,扩大代表性不足群体的参与。高磁各向异性材料在下一代领域具有关键应用超高密度热辅助磁记录介质以及高能量密度永磁体。 L10 相有序 FePt 合金是记录介质应用的理想选择。然而,一个关键的挑战是将沉积态的低各向异性相转变为所需的高各向异性相所需的高退火温度。该项目将利用原子级多层溅射和快速热退火来实现高磁各向异性的 L10 FePt 基薄膜。这些材料的磁性将通过适当调整有效价电子数来定制,以使用三元 FePt 基合金实现所需的高各向异性、大饱和磁化强度和低居里温度。这些方法将扩展到实现 L10 FeNi 薄膜,这是使用地球丰富元素的替代类型永磁体。将获得对这些薄膜中无序相变的真正理解,并对相分数进行定量评估。 U.C. 之间的合作关系Davis 和 Seagate 将帮助实现 L10 FePt 和 FeNi 基合金,这些合金易于合成,在原子尺度上具有受控的各向异性和最小化的开关场分布。此类材料具有潜在的变革性技术影响,可加快新兴超高密度热辅助磁记录技术的应用,并实现不含稀土和贵金属的高能量密度永磁体。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic structure and internal field nuclear magnetic resonance of cobalt nanowires
钴纳米线的磁结构与内场核磁共振
  • DOI:
    10.1039/d1cp05164d
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Scholzen, Pascal;Lang, Guillaume;Andreev, Andrey S.;Quintana, Alberto;Malloy, James;Jensen, Christopher J.;Liu, Kai;d’Espinose de Lacaillerie, Jean
  • 通讯作者:
    d’Espinose de Lacaillerie, Jean
Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging
用于非侵入性和定量生物成像的双向磁共振调谐和增强减影成像
  • DOI:
    10.1038/s41565-020-0678-5
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    38.3
  • 作者:
    Wang, Zhongling;Xue, Xiangdong;Lu, Hongwei;He, Yixuan;Lu, Ziwei;Chen, Zhijie;Yuan, Ye;Tang, Na;Dreyer, Courtney A.;Quigley, Lizabeth;et al
  • 通讯作者:
    et al
Electrically Enhanced Exchange Bias via Solid-State Magneto-ionics
通过固态磁离子学增强电交换偏置
  • DOI:
    10.1021/acsami.1c11126
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Murray, Peyton D.;Jensen, Christopher J.;Quintana, Alberto;Zhang, Junwei;Zhang, Xixiang;Grutter, Alexander J.;Kirby, Brian J.;Liu, Kai
  • 通讯作者:
    Liu, Kai
Probing antiferromagnetic coupling in magnetic insulator/metal heterostructures
探测磁绝缘体/金属异质结构中的反铁磁耦合
  • DOI:
    10.1103/physrevmaterials.6.094418
  • 发表时间:
    2022-09-30
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    P. Quarterman;Yabin Fan;Zhijie Chen;C. J. Jensen;R. Chopdekar;D. Gilbert;M. Holtz;M. Stiles;J. Borchers;Kai Liu;Luqiao Liu;A. Grutter
  • 通讯作者:
    A. Grutter
Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO
Gd/NiCoO 中磁离子感应交换偏压的离子辐照和注入改性
  • DOI:
    10.1016/j.jmmm.2021.168479
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jensen, Christopher J.;Quintana, Alberto;Sall, Mamour;Diez, Liza Herrera;Zhang, Junwei;Zhang, Xixiang;Ravelosona, Dafiné;Liu, Kai
  • 通讯作者:
    Liu, Kai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kai Liu其他文献

Magnetic and electronic transitions in monolayer electride Gd2C induced by hydrogenation: A first-principles study
  • DOI:
    10.1103/physrevb.106.045138
  • 发表时间:
    2022-03-29
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Duo Xu;Jian;Zhong;Kai Liu
  • 通讯作者:
    Kai Liu
CohortVA: A Visual Analytic System for Interactive Exploration of Cohorts based on Historical Data
CohortVA:基于历史数据的群组交互式探索的视觉分析系统
  • DOI:
    10.1109/tvcg.2022.3209483
  • 发表时间:
    2022-08-19
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Wei Zhang;Jason K. Wong;Xumeng Wang;Youcheng Gong;Rongchen Zhu;Kai Liu;Zihan Yan;Siwei Tan;Huamin Qu;Siming Chen;W. Chen
  • 通讯作者:
    W. Chen
The alterations of oral, airway and intestine microbiota in chronic obstructive pulmonary disease: a systematic review and meta-analysis
慢性阻塞性肺疾病中口腔、气道和肠道微生物群的改变:系统评价和荟萃分析
  • DOI:
    10.3389/fimmu.2024.1407439
  • 发表时间:
    2024-05-08
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Ziwei Kou;Kai Liu;Zheng;Yaoyao Wang;Yanmiao Li;Yinan Li;Xinjuan Yu;Wei Han
  • 通讯作者:
    Wei Han
Exploration of Novel MTH1 Inhibitors Using Fragment-Based De Novo Design, Virtual Screening, and Reverse Virtual Screening Methods
使用基于片段的从头设计、虚拟筛选和反向虚拟筛选方法探索新型 MTH1 抑制剂
Risk factors associated with transport gap bending deformity after bone transport in the treatment of lower extremity bone defects caused by infection
感染所致下肢骨缺损骨转运治疗后转运间隙弯曲畸形的危险因素
  • DOI:
    10.21203/rs.3.rs-468193/v1
  • 发表时间:
    2021-04-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kai Liu;Yanshi Liu;F. Cai;Chenchen Fan;A. Abulaiti;P. Ren;A. Yusufu
  • 通讯作者:
    A. Yusufu

Kai Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kai Liu', 18)}}的其他基金

Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Standard Grant
Magnetic Recording Media based on High Entropy Alloys
基于高熵合金的磁记录介质
  • 批准号:
    2151809
  • 财政年份:
    2022
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Standard Grant
Chiral Spin Textures in Magnetic Nanostructures
磁性纳米结构中的手性自旋纹理
  • 批准号:
    2005108
  • 财政年份:
    2020
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Continuing Grant
Magnetic Nanostructures with Perpendicular Anisotropy for Room Temperature Skyrmions
室温斯格明子具有垂直各向异性的磁性纳米结构
  • 批准号:
    1905468
  • 财政年份:
    2018
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Magnetic Property Measurements System
MRI:获取磁特性测量系统
  • 批准号:
    1828420
  • 财政年份:
    2018
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Standard Grant
Enabling Quantum Leap: Convergent Approach to the Challenges of Moore's Law National Science Foundation, Division of Materials Research, Condensed Matter Physics Program Workshop
实现量子飞跃:应对摩尔定律挑战的收敛方法国家科学基金会材料研究部凝聚态物理项目研讨会
  • 批准号:
    1829683
  • 财政年份:
    2018
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Standard Grant
Magnetic Nanostructures with Perpendicular Anisotropy for Room Temperature Skyrmions
室温斯格明子具有垂直各向异性的磁性纳米结构
  • 批准号:
    1610060
  • 财政年份:
    2017
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Standard Grant
GOALI: High Magnetic Anisotropy Materials for Ultrahigh Density Heat-assisted Magnetic Recording Media.
目标:用于超高密度热辅助磁记录介质的高磁各向异性材料。
  • 批准号:
    1611424
  • 财政年份:
    2016
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Standard Grant
EAGER: Magnetic Nanostructures with Perpendicular Anisotropy
EAGER:具有垂直各向异性的磁性纳米结构
  • 批准号:
    1543582
  • 财政年份:
    2015
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Standard Grant
Explosive Solutions of Stochastic Retarded Parabolic and Hyperbolic Differential Equations
随机缓滞抛物型和双曲微分方程的爆炸解
  • 批准号:
    EP/I019987/1
  • 财政年份:
    2011
  • 资助金额:
    $ 19.66万
  • 项目类别:
    Research Grant

相似国自然基金

弱磁各向异性自旋载体及其自旋阻挫体系的电子自旋量子比特研究
  • 批准号:
    22373048
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
具有垂直磁各向异性的多层膜中产生自发交换偏置效应的关键因素及其机制研究
  • 批准号:
    52371244
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
磁各向异性水凝胶微弹簧递送新藤黄酸与辅助磁热疗的机制研究
  • 批准号:
    82360704
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
强关联氧化物垂直磁各向异性的低功耗可逆调控及其突触仿生应用
  • 批准号:
    52301230
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
各向异性钕铁硼磁粉颗粒的梯度结构、产生机理及其调控研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 19.66万
  • 项目类别:
Establishing the Relationship Between Muscle Quality and Joint Loading for Individuals with Transtibial Amputation
建立小腿截肢患者的肌肉质量和关节负荷之间的关系
  • 批准号:
    10677236
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
Microstructural Injury to the Brainstem and Spinal Cord Determines Outcomes in CM and SM
脑干和脊髓的微结构损伤决定 CM 和 SM 的结果
  • 批准号:
    10629123
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
Quantitative assessment of angiogenesis using ultrasound multiple scattering
使用超声多重散射定量评估血管生成
  • 批准号:
    10718807
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
Effects of in situ orientation on quantitative MR-based measures of cartilage endplate health
原位定向对基于 MR 的软骨终板健康定量测量的影响
  • 批准号:
    10607735
  • 财政年份:
    2023
  • 资助金额:
    $ 19.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了